A Workload-aware Resources Scheduling Method for Virtual Machine

被引:5
|
作者
Qu, Hongshan [1 ]
Liu, Xiaodong [1 ]
Xu, Huating [1 ]
机构
[1] Henan Inst Engn, Sch Comp, Zhengzhou 451191, Peoples R China
关键词
Virtualization; Virtual Machine; Resource allocation;
D O I
10.14257/ijgdc.2015.8.1.23
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Virtualization-based cloud computing platforms allow multiple virtual machines (VMs) running on the same physical machine. Efficient allocation of limited underlying resources has been a key issue. In order to improve the CPU resources utilization, this paper presents a workload-aware CPU resources scheduling method (WARS). WARS uses the allocated credits and consumed credits to diagnose the CPU resources requirements of VMs and dynamically adjusts CPU resources according to the requirements of VMs. The adjustment of CPU resources is converted into increased or decreased weights of VMs. The implementation of WARS is confined to the VMM layer, without VM dependency. Our evaluation shows that WARS can improve the overall utilization of CPU resources.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 50 条
  • [1] cCluster: A Core Clustering Mechanism for Workload-Aware Virtual Machine Scheduling
    Dehsangi, Mostafa
    Asyabi, Esmail
    Sharifi, Mohsen
    Azhari, Seyed Vahid
    [J]. 2015 3RD INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD) AND INTERNATIONAL CONFERENCE ON OPEN AND BIG (OBD), 2015, : 248 - 255
  • [2] A Workload-Aware Energy Model for Virtual Machine Migration
    De Maio, Vincenzo
    Kecskemeti, Gabor
    Prodan, Radu
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING - CLUSTER 2015, 2015, : 274 - 283
  • [3] Power-efficient distributed scheduling of virtual machines using workload-aware consolidation techniques
    Sharifi, Mohsen
    Salimi, Hadi
    Najafzadeh, Mahsa
    [J]. JOURNAL OF SUPERCOMPUTING, 2012, 61 (01): : 46 - 66
  • [4] Workload-Aware Scheduling for Data Analytics upon Heterogeneous Storage
    Qian, Zhuzhong
    Gao, Yuan
    Ji, Mingtao
    Peng, Hui
    Chen, Peng
    Jin, Yibo
    Lu, Sanglu
    [J]. 2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 580 - 587
  • [5] Power-efficient distributed scheduling of virtual machines using workload-aware consolidation techniques
    Mohsen Sharifi
    Hadi Salimi
    Mahsa Najafzadeh
    [J]. The Journal of Supercomputing, 2012, 61 : 46 - 66
  • [6] Federated learning with workload-aware client scheduling in heterogeneous systems
    Li, Li
    Liu, Duo
    Duan, Moming
    Zhang, Yu
    Ren, Ao
    Chen, Xianzhang
    Tan, Yujuan
    Wang, Chengliang
    [J]. NEURAL NETWORKS, 2022, 154 : 560 - 573
  • [7] WAIO: Improving Virtual Machine Live Storage Migration for the Cloud by Workload-Aware IO Outsourcing
    Yang, Yaodong
    Jiang, Hong
    Mao, Bo
    Tian, Lei
    Yang, Yuekun
    Qian, Junjie
    [J]. 2015 IEEE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM), 2015, : 314 - 321
  • [8] Workload-Aware Placement Strategies to Leverage Disaggregated Resources in the Datacenter
    Call, Aaron
    Polo, Jorda
    Carrera, David
    [J]. IEEE SYSTEMS JOURNAL, 2022, 16 (01): : 1697 - 1708
  • [9] Raccoon: A Novel Network I/O Allocation Framework for Workload-Aware VM Scheduling in Virtual Environments
    Zeng, Lingfang
    Wang, Yang
    Fan, Xiaopeng
    Xu, Chengzhong
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2017, 28 (09) : 2651 - 2662
  • [10] Workload-Aware DRAM Error Prediction using Machine Learning
    Mukhanov, Lev
    Tovletoglou, Konstantinos
    Vandierendonck, Hans
    Nikolopoulos, Dimitrios S.
    Karakonstantis, Georgios
    [J]. PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC 2019), 2019, : 106 - 118