Concentrations of atmospheric CO2 and other radiatively active trace gases have risen since the Industrial Revolution. Such atmospheric modifications can alter the global climate and hydrologic cycle, in turn affecting water resources. The clear physical and biological sensitivities of water resources to climate, the indication that climate change may be occurring, and the substantial social and economic dependencies on water resources have instigated considerable research activity in the area of potential water resource impacts. We discuss how the literature on climate change and water resources responds to three basic research needs: (1) a need for water managers to clearly describe the climatic and hydrologic statistics and characteristics needed to estimate climatic impacts on water resources, (2) a need to estimate the impacts of climate change on water resources, and (3) a need to evaluate standard water management and planning methods to determine if uncertainty regarding fundamental assumptions (e.g., hydrologic stationarity) implies that these methods should be revised. The climatic and hydrologic information needs for water resource managers can be found in a number of sources. A proliferation of impact assessments use a variety of methods for generating climate scenarios, and apply both modeling approaches and historical analyses of past responses to climate fluctuations for revealing resource or system sensitivities to climate changes. Traditional techniques of water resources planning and management have been examined, yielding, for example, suggestions for new methods for incorporating climate information in real-time water management.