EXTENSION OF RENORMALIZATION GROUP

被引:7
|
作者
ASTAUD, M
JOUVET, B
机构
来源
NUOVO CIMENTO A | 1968年 / 53卷 / 04期
关键词
D O I
10.1007/BF02758731
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
引用
收藏
页码:841 / +
相关论文
共 50 条
  • [1] Higher-derivative extension of the functional renormalization group
    Tanaka, Gota
    Tsuchiya, Asato
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (06):
  • [2] A renormalization group analysis of the Hill model and its HEIDI extension
    Basso, L.
    Fischer, O.
    van der Bij, J. J.
    PHYSICS LETTERS B, 2014, 730 : 326 - 331
  • [3] Renormalization group running of couplings and masses in the basic extension of the standard model
    Morales C, D.
    Juarez, S. R.
    Kielanowski, P.
    PASCOS 2012 - 18TH INTERNATIONAL SYMPOSIUM ON PARTICLES STRINGS AND COSMOLOGY, 2014, 485
  • [4] Extension and Unification of Singular Perturbation Methods for ODEs Based on the Renormalization Group Method
    Chiba, Hayato
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (03): : 1066 - 1115
  • [5] ON RENORMALIZATION GROUP
    NILSSON, J
    NUOVO CIMENTO, 1965, 39 (01): : 84 - +
  • [6] Renormalization scheme dependence with renormalization group summation
    McKeon, D. G. C.
    PHYSICAL REVIEW D, 2015, 92 (04):
  • [7] Renormalization scheme dependence and renormalization group summation
    Chishtie, F. A.
    McKeon, D. G. C.
    CANADIAN JOURNAL OF PHYSICS, 2018, 96 (02) : 233 - 240
  • [8] RENORMALIZATION GROUP EQUATIONS IN DIFFERENT RENORMALIZATION SCHEMES
    VLADIMIROV, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 25 (03) : 1170 - 1175
  • [9] Renormalization group equation study of the scalar sector of the minimal B - L extension of the standard model
    Basso, Lorenzo
    Moretti, Stefano
    Pruna, Giovanni Marco
    PHYSICAL REVIEW D, 2010, 82 (05):
  • [10] Quantum renormalization group
    Nagy, S.
    Polonyi, J.
    Steib, I.
    PHYSICAL REVIEW D, 2016, 93 (02)