ON CAYLEY FORMULA FOR COUNTING FORESTS

被引:8
|
作者
TAKACS, L
机构
[1] Case Western Reserve University, Cleveland
关键词
D O I
10.1016/0097-3165(90)90064-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1889, A. Cayley stated that the number of forests with n labeled vertices that consist of s distinct trees such that s specified vertices belong to distinct trees is snn - s - 1 for 1 ≤ s ≤ n. In this paper Cayley's formula is proved in a very simple way. © 1990.
引用
收藏
页码:321 / 323
页数:3
相关论文
共 50 条
  • [1] A counting formula for labeled, rooted forests
    Lampe, KA
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2002, 15 (01) : 71 - 97
  • [2] A Counting Formula for Labeled, Rooted Forests
    Kristen A. Lampe
    [J]. Journal of Algebraic Combinatorics, 2002, 15 : 71 - 97
  • [3] On Cayley's formula for counting trees in nested interval graphs
    Coppersmith, D
    Lotker, Z
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2004, 11 : 241 - 245
  • [4] COUNTING FORESTS
    TAKACS, L
    [J]. DISCRETE MATHEMATICS, 1990, 84 (03) : 323 - 326
  • [5] PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS
    Peyerimhoff, Norbert
    Roth, Marc
    Schmitt, Johannes
    Stix, Jakob
    Vdovina, Alina
    Wellnitz, Philip
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 405 - 486
  • [6] A refinement of Cayley's formula for trees
    Gessel, IM
    Seo, S
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 11 (02):
  • [7] An extension of the Cayley-Sylvester formula
    Manivel, L.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (06) : 1839 - 1842
  • [8] Homothetic Cayley Formula and its Applications
    Unal, Dogan
    Gungor, Mehmet Ali
    Tosun, Murat
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 809 - 824
  • [9] Homothetic Cayley Formula and its Applications
    Doğan Ünal
    Mehmet Ali Güngör
    Murat Tosun
    [J]. Advances in Applied Clifford Algebras, 2016, 26 : 809 - 824
  • [10] A Telescopic Proof of Cayley's Formula
    Chapuy, Guillaume
    Perarnau, Guillem
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2024,