Domination Equivalence in Graphs

被引:0
|
作者
Blair, Jean R. S. [1 ]
Goddard, Wayne [2 ]
Hedetniemi, Sandra M. [2 ]
Hedetniemi, Stephen T. [2 ]
Horton, Steven B. [3 ]
机构
[1] US Mil Acad, Dept Elect Engn & Comp Sci, West Point, NY 10996 USA
[2] Clemson Univ, Dept Comp Sci, Clemson, SC 29634 USA
[3] US Mil Acad, Dept Math Sci, West Point, NY 10996 USA
关键词
DE-pair; ODE-pair;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A DE-pair (ODE-pair) in a graph consists of two disjoint subsets of vertices with the same closed neighborhood (open neighborhood). We consider the question of determining the smallest and largest subsets over all such pairs. We provide sharp bounds on these for general graphs and for trees, and show that the associated parameters are computable for trees but intractable in general.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 50 条
  • [1] EQUIVALENCE DOMINATION IN GRAPHS
    Arumugam, S.
    Chellali, Mustapha
    Haynes, Teresa W.
    [J]. QUAESTIONES MATHEMATICAE, 2013, 36 (03) : 331 - 340
  • [2] Colour Class Domination equivalence partition and Colourful resolving sets in graphs
    Sivakumar, J.
    Baskar, A. Wilson
    Sundareswaran, R.
    Swaminathan, V.
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2024, 56 (3-4): : 70 - 77
  • [3] On -Domination in Graphs
    Das, Angsuman
    Laskar, Renu C.
    Rad, Nader Jafari
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (01) : 193 - 205
  • [4] Generalized domination and efficient domination in graphs
    Bange, DW
    Barkauskas, AE
    Host, LH
    Slater, PJ
    [J]. DISCRETE MATHEMATICS, 1996, 159 (1-3) : 1 - 11
  • [5] DOMINATION AND INDEPENDENT DOMINATION NUMBERS OF GRAPHS
    SEIFTER, N
    [J]. ARS COMBINATORIA, 1994, 38 : 119 - 128
  • [6] Domination versus disjunctive domination in graphs
    Henning, Michael A.
    Marcon, Sinclair A.
    [J]. QUAESTIONES MATHEMATICAE, 2016, 39 (02) : 261 - 273
  • [7] Graphs that are simultaneously efficient open domination and efficient closed domination graphs
    Klavzar, Sandi
    Peterin, Iztok
    Yero, Ismael G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 217 : 613 - 621
  • [8] The domination equivalence classes of paths
    Beaton, I
    Brown, J., I
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 291 - 312
  • [9] Revisiting Domination, Hop Domination, and Global Hop Domination in Graphs
    Salasalan, Gemma
    Canoy Jr, Sergio R.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1415 - 1428
  • [10] Unique irredundance, domination and independent domination in graphs
    Fischermann, M
    Volkmann, L
    Zverovich, I
    [J]. DISCRETE MATHEMATICS, 2005, 305 (1-3) : 190 - 200