The solution of the Cauchy problem for generalized Euler-Poisson-Darboux equation

被引:0
|
作者
Hasanov, Anvar [1 ]
机构
[1] Uzbek Acad Sci, Inst Math, 29 F Hodjaev St, Tashkent 700125, Uzbekistan
关键词
Generalized Euler-Poisson-Darboux equation; degenerating hyperbolic type equations; function of Riemann; a Cauchy problem; confluent hypergeometric functions of Kummer from three variables;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper in a characteristic triangle Cauchy problem for generalized Euler-Poisson-Darboux equation L-alpha,L-beta (u) equivalent to u(xi eta) + [alpha/eta+xi + beta/eta-xi] u(xi) + [alpha/eta+xi - beta/eta-xi] u(eta) + gamma u = 0. is considered. Function of Riemann, which expressed by Kummer's function of three variables is constructed in an explicit form. By the method of Riemann for the hyperbolic equations, a solution of the Cauchy problem for generalized Euler-Poisson-Darboux equation expressed in an explicit form.
引用
收藏
页码:30 / 43
页数:14
相关论文
共 50 条