A NEW PROOF OF SAHLQVIST THEOREM ON MODAL DEFINABILITY AND COMPLETENESS

被引:51
|
作者
SAMBIN, G [1 ]
VACCARO, V [1 ]
机构
[1] NAPLES UNIV,DIPARTIMENTO MATEMAT & APPL,I-80134 NAPLES,ITALY
关键词
D O I
10.2307/2274758
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:992 / 999
页数:8
相关论文
共 50 条
  • [1] A Sahlqvist theorem for distributive modal logic
    Gehrke, M
    Nagahashi, H
    Venema, Y
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2005, 131 (1-3) : 65 - 102
  • [2] A Sahlqvist Theorem for Relevant Modal Logics
    Takahiro Seki
    [J]. Studia Logica, 2003, 73 (3) : 383 - 411
  • [3] Algorithmic Definability and Completeness in Modal Logic
    Vakarelov, Dimiter
    [J]. FOUNDATIONS OF INFORMATION AND KNOWLEDGE SYSTEMS, PROCEEDINGS, 2010, 5956 : 6 - 8
  • [4] Sahlqvist theorem for modal fixed point logic
    Bezhanishvili, Nick
    Hodkinson, Ian
    [J]. THEORETICAL COMPUTER SCIENCE, 2012, 424 : 1 - 19
  • [5] Elementary Definability and Completeness in General and Positive Modal Logic
    Ernst Zimmermann
    [J]. Journal of Logic, Language and Information, 2003, 12 (1) : 99 - 117
  • [6] A COMPLETENESS THEOREM IN MODAL LOGIC
    BAYART, A
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1966, 31 (02) : 276 - &
  • [7] APPLICATION OF ROBINSON A PROOF OF COMPLETENESS THEOREM
    NAKANO, Y
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1971, 47 : 929 - 931
  • [8] A Modal Logic for Uncertainty: a Completeness Theorem
    Corsi, Esther Anna
    Flaminio, Tommaso
    Godo, Lluis
    Hosni, Hykel
    [J]. INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, VOL 215, 2023, 215 : 119 - 129
  • [9] Arithmetical Completeness Theorem for Modal Logic
    Kurahashi, Taishi
    [J]. STUDIA LOGICA, 2018, 106 (02) : 219 - 235
  • [10] An institution-independent proof of the Beth definability theorem
    Aiguier M.
    Barbier F.
    [J]. Studia Logica, 2007, 85 (3) : 333 - 359