Approximation by Fourier sums and Kolmogorov widths for classes MBp, (Omega)(theta) of periodic functions of several variables

被引:0
|
作者
Stasyuk, S. A. [1 ]
机构
[1] Ukrainian Natl Acad Sci, Inst Math, Kiev, Ukraine
来源
关键词
hyperbolic cross; Kolmogorov width; best approximation; mixed smoothness; Fourier sums;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain exact order estimates for approximations of mixed smoothness classes MBp,theta Omega by Fourier sums in the metric L-q for 1 < p < q < infinity. The spectrum of approximation polynomials lies in the sets generated by level surfaces of the function Omega(t)/Pi(d)(j=1) t(j)(1/p-1/q). Under some matching conditions on the parameters p, q and theta, we obtain exact order estimates for Kolmogorov widths of the classes under consideration in the metric L-q.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条