2-DIMENSIONAL LATTICE MODEL WITH AN INFINITE NUMBER OF ZERO-TEMPERATURE STATES

被引:0
|
作者
BERERA, A
机构
[1] Department of Physics, University of California, Berkeley, Berkeley
来源
PHYSICAL REVIEW B | 1992年 / 46卷 / 02期
关键词
D O I
10.1103/PhysRevB.46.1248
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The two-dimensional Ising model with nearest-neighbor coupling and two second-nearest-neighbor couplings introduced by de Fontaine, Willie, and Moss [Phys. Rev. B 36, 5709 (1987)] is found to have an infinite number of zero-temperature states for any value of concentration between successive vertex points c0 = 1.0, 0.75, 0.50, 0.25, and 0.0. A resolution of the ground states of order by low-temperature expansion is not possible because of the nonconvergence of the series. By analogy to a similar situation in the two-dimensional axial next-nearest-neighbor Ising model, it is conjectured that in the present model the paramagnetic phase persists down to T = 0 with the possibility of floating phases.
引用
收藏
页码:1248 / 1249
页数:2
相关论文
共 50 条
  • [1] ZERO-TEMPERATURE SPIN DYNAMICS OF A RANDOM 2-DIMENSIONAL XY MODEL
    GAWIEC, P
    GREMPEL, DR
    PHYSICAL REVIEW B, 1993, 48 (10): : 7114 - 7124
  • [2] LIFSHITZ LAW FOR THE VOLUME OF A 2-DIMENSIONAL DROPLET AT ZERO-TEMPERATURE
    CHAYES, L
    SCHONMANN, RH
    SWINDLE, G
    JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (5-6) : 821 - 831
  • [3] Criteria for infinite avalanches in the zero-temperature nonequilibrium random-field Ising model on a Bethe lattice
    Shukla, Prabodh
    Thongjaomayum, Diana
    PHYSICAL REVIEW E, 2017, 95 (04)
  • [4] Zero-temperature properties of the quantum dimer model on the triangular lattice
    Ralko, A
    Ferrero, M
    Becca, F
    Ivanov, D
    Mila, F
    PHYSICAL REVIEW B, 2005, 71 (22):
  • [5] ZERO-TEMPERATURE MAGNETIC PROPERTIES OF HUBBARD MODEL WITH INFINITE COULOMB REPULSION
    MEYER, JS
    SCHWEITZER, JW
    PHYSICAL REVIEW B, 1973, 7 (09) : 4253 - 4260
  • [6] ZERO-TEMPERATURE QUANTUM PHASE-TRANSITION OF A 2-DIMENSIONAL ISING SPIN-GLASS
    RIEGER, H
    YOUNG, AP
    PHYSICAL REVIEW LETTERS, 1994, 72 (26) : 4141 - 4144
  • [7] On the Zero-Temperature Limit of Gibbs States
    Jean-René Chazottes
    Michael Hochman
    Communications in Mathematical Physics, 2010, 297 : 265 - 281
  • [8] On the Zero-Temperature Limit of Gibbs States
    Chazottes, Jean-Rene
    Hochman, Michael
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (01) : 265 - 281
  • [9] Zero-temperature Phase Diagram of Two Dimensional Hubbard Model
    Inaba, K.
    Koga, A.
    Suga, S.
    Kawakami, N.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 4: QUANTUM PHASE TRANSITIONS AND MAGNETISM, 2009, 150
  • [10] The Percolation Transition for the Zero-Temperature Stochastic Ising Model on the Hexagonal Lattice
    C. Douglas Howard
    Charles M. Newman
    Journal of Statistical Physics, 2003, 111 : 57 - 62