THE CRAMER-RAO LOWER BOUND FOR SIGNALS WITH CONSTANT AMPLITUDE AND POLYNOMIAL PHASE

被引:193
|
作者
PELEG, S [1 ]
PORAT, B [1 ]
机构
[1] TECHNION ISRAEL INST TECHNOL,DEPT ELECT ENGN,IL-32000 HAIFA,ISRAEL
关键词
D O I
10.1109/78.80864
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This correspondence derives the Cramer-Rao lower bound for the variances of the estimated parameters of complex signals with constant amplitude and polynomial phase, measured in additive Gaussian noise. Signals of this type appear in many radar applications, and the CRLB formulas have practical importance in these applications. Exact and approximate forms of bound are presented. The approximation error is of second order in the number of measurements.
引用
收藏
页码:749 / 752
页数:4
相关论文
共 50 条
  • [1] Comments on "The Cramer-Rao lower bounds for signals with constant amplitude and polynomial phase"
    Ristic, B
    Boashash, B
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (06) : 1708 - 1709
  • [2] On the Cramer-Rao bound for polynomial phase signals
    McKilliam, Robby
    Pollok, Andre
    SIGNAL PROCESSING, 2014, 95 : 27 - 31
  • [3] The Cramer-Rao bound for the estimation of noisy phase signals
    Zoubir, AM
    Taleb, A
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3101 - 3104
  • [4] Cramer-Rao Lower Bound for Frequency Estimation of Sinusoidal Signals
    Dai, Erhan
    Su, Linfei
    Ge, Yan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 7
  • [5] An Approximate Cramer-Rao Lower Bound for Multiple LFMCW Signals
    Hamschin, Brandon M.
    Grabbe, Michael T.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2017, 53 (03) : 1365 - 1374
  • [6] The Cramer-Rao Lower Bound in the Phase Retrieval Problem
    Balan, Radu
    Bekkerman, David
    2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [7] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    JOSHI, VM
    ANNALS OF STATISTICS, 1976, 4 (05): : 998 - 1002
  • [8] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    WIJSMAN, RA
    ANNALS OF STATISTICS, 1973, 1 (03): : 538 - 542
  • [9] THE CRAMER-RAO LOWER BOUND FOR DIRECTIONS OF ARRIVAL OF GAUSSIAN CYCLOSTATIONARY SIGNALS
    SCHELL, SV
    GARDNER, WA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (04) : 1418 - 1422
  • [10] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 23 - 24