BAYESIAN STATISTICS OF NONLINEAR INVERSE PROBLEMS - EXAMPLE OF THE MAGNETOTELLURIC 1-D INVERSE PROBLEM

被引:19
|
作者
TARITS, P
JOUANNE, V
MENVIELLE, M
ROUSSIGNOL, M
机构
[1] INST PHYS GLOBE,F-75252 PARIS,FRANCE
[2] UNIV PARIS 11,PHYS TERRE & PLANETES LAB,F-91405 ORSAY,FRANCE
[3] UNIV SCI & TECH LILLE FLANDRES ARTOIS,STAT & PROBABIL LAB,F-59655 VILLENEUVE DASCQ,FRANCE
关键词
A POSTERIORI PDF; A PRIORI PROBABILITY DENSITY FUNCTION (PDF); BAYESIAN INVERSION; MAGNETOTELLURIC INVERSION; MARGINAL PDF;
D O I
10.1111/j.1365-246X.1994.tb00128.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a practical algorithm for determining the Bayesian solution of non-linear inverse problems with a limited number of parameters. This approach allows the use of very general conditional probability density functions (pdfs of the data given the model parameters) and a priori pdfs (prior beliefs upon the parameters). The results consist in the a posteriori marginal pdfs of the model parameters. The marginal pdfs describe the additional information (if any) brought by the data to the prior knowledge about the model parameters. We have paid a special attention to the numerical calculation of the a posteriori pdfs and we propose a solution which enables the simultaneous determination of the numerical estimates of the a posteriori pdfs and their uncertainties. With the help of a practical example (the 1-D magnetotelluric inverse problem) with synthetic and real data, we show that in most cases, the a posteriori marginal pdfs are complicated functions and cannot be predicted from the data pdf or the a priori pdfs. Consequently, the standard analyses applied to the same data sets such as the maximum likelihood techniques or the asymptotic estimation technique would lead to severely biased estimates of the parameters. This remark is likely to be true for any non-linear inverse problem.
引用
收藏
页码:353 / 368
页数:16
相关论文
共 50 条
  • [1] Multimodal variational autoencoder for inverse problems in geophysics: application to a 1-D magnetotelluric problem
    Rodriguez, Oscar
    Taylor, Jamie M.
    Pardo, David
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 235 (03) : 2598 - 2613
  • [2] 1-D inverse problem of thermoelasticity
    Yakhno, VG
    [J]. MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 549 - 554
  • [3] THE MAGNETOTELLURIC INVERSE PROBLEM
    PARKER, RL
    [J]. GEOPHYSICAL SURVEYS, 1983, 6 (1-2): : 5 - 25
  • [4] NUMERICAL INVERSE MAGNETOTELLURIC PROBLEMS
    KU, CC
    [J]. GEOPHYSICS, 1976, 41 (02) : 276 - 286
  • [5] INVERSE PROBLEM OF MAGNETOTELLURIC SOUNDING
    WU, FT
    [J]. GEOPHYSICS, 1968, 33 (06) : 972 - &
  • [6] CONVERGENCE OF AN INVERSE PROBLEM FOR A 1-D DISCRETE WAVE EQUATION
    Baudouin, Lucie
    Ervedoza, Sylvain
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (01) : 556 - 598
  • [7] Solving 1-D inverse problems by Chebyshev polynomial expansion
    Grechka, VY
    McMechan, GA
    Volovodenko, VA
    [J]. GEOPHYSICS, 1996, 61 (06) : 1758 - 1768
  • [8] SOLUTION TO THE INVERSE PROBLEM OF THE 1-D WAVE-EQUATION
    HUANG, JI
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (03) : 735 - 739
  • [9] Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem
    Zhdanov, M
    Tolstaya, E
    [J]. INVERSE PROBLEMS, 2004, 20 (03) : 937 - 952
  • [10] The application of PSO to the Nonlinear inverse problem of Magnetotelluric sounding data
    Xiao, Min
    Shi, Xueming
    Fan, Jianke
    Yang, Guoshi
    Zhang, Xuhui
    [J]. PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 704 - 707