PARALLEL JACOBI ALGORITHM FOR MATRIX DIAGONALIZATION ON TRANSPUTER NETWORKS

被引:3
|
作者
TERVOLA, P
YEUNG, W
机构
[1] Department of Physics, Queen Mary and Westfield College, London, E1 4NS, Mile End Road
关键词
SYMMETRICAL MATRICES; EIGENVALUES; EIGENVECTORS; JACOBI METHOD; MIMD MACHINES; TRANSPUTER NETWORKS; DISTRIBUTED MEMORY PROCESSORS;
D O I
10.1016/S0167-8191(05)80102-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a parallel algorithm for the determination of the eigenvalues and eigenvectors of a real symmetric matrix. The algorithm allocates a certain number of columns to each of the transputers. The Jacobi cycle of annihilating the off diagonal elements consists of letting all the transputers perform Jacobi rotations concurrently, correcting for overlapping transformations and shuffling the sets of columns among the transputers. We develop formulae for the speedup and efficiency. Using Occam 2 we implement the algorithm on several transputer networks and compare the actual timings with our calculated results. We discuss the merits of this particular implementation.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
  • [1] A PARALLEL FFT ALGORITHM FOR TRANSPUTER NETWORKS
    HUANG, YG
    PAKER, Y
    PARALLEL COMPUTING, 1991, 17 (08) : 895 - 906
  • [2] A PARALLEL JACOBI DIAGONALIZATION ALGORITHM FOR A LOOP MULTIPLE PROCESSOR SYSTEM
    WHITESIDE, RA
    OSTLUND, NS
    HIBBARD, PG
    IEEE TRANSACTIONS ON COMPUTERS, 1984, 33 (05) : 409 - 413
  • [3] Implementation of parallel matrix inverse algorithm on a transputer array
    Gianey, R.K.
    International Conference on Applications of Transputers, 1991,
  • [4] A Jacobi-Based Parallel Algorithm for Matrix Inverse Computations
    Zhou, Tian
    Fang, Shuai
    Yang, Xi
    Li, Zheng
    Guo, Qin
    Jiang, Bin
    2012 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2012), 2012,
  • [5] PIPELINED RING ALGORITHM FOR MATRIX MULTIPLICATION ON TRANSPUTER NETWORKS - PERFORMANCE ANALYSIS AND ESTIMATION
    SRINIVAS, S
    BASU, A
    KUMAR, KG
    PAULRAJ, A
    PATNAIK, LM
    COMPUTING SYSTEMS, 1992, 7 (01): : 42 - 51
  • [6] A parallel algorithm for the diagonalization of symmetric matrices
    Cernuschi-Frías, B
    Lew, SE
    González, HJ
    Pfefferman, JD
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL V: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 81 - 84
  • [7] A parallel genetic algorithm approach to solving the unit commitment problem: Implementation on the transputer networks
    Yang, HT
    Yang, PC
    Huang, CL
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (02) : 661 - 668
  • [8] A PARALLEL MULTIGRID FAS SCHEME FOR TRANSPUTER NETWORKS
    STEWART, A
    SHAW, GJ
    PARALLEL COMPUTING, 1990, 16 (2-3) : 335 - 342
  • [9] Parallel-in-Time Algorithm for Electromagnetic Transient Numerical Simulation Based on Matrix Diagonalization
    Wang F.
    Wang Y.
    Song D.
    Yang X.
    Song X.
    Dianwang Jishu/Power System Technology, 2017, 41 (08): : 2521 - 2527
  • [10] A Diagonalization Algorithm for the Distance Matrix of Cographs
    Du, Zhibin
    IEEE ACCESS, 2018, 6 : 74931 - 74939