An implicit multigrid method for the compressible Navier-Stokes equations is applied to a series of two-dimensional, steady, laminar hypersonic flows over a compression ramp, including both attached and separated flow conditions. The algorithm uses upwind-biased differencing for the convective and pressure terms and central differencing for the shear-stress and heat-transfer terms. An implicit spatially factored scheme is used to advance the solution in time on a given mesh, and a V-cycle multigrid strategy is used to accelerate convergence. The multigrid algorithm provided an order of magnitude decrease in the computational time required to obtain a converged position of the separation location and enabled a substantially grid-independent result to be obtained for each of the flows considered.