Conservative Confidence Ellipsoids for Linear Model Parameters

被引:0
|
作者
Rukhin, A. L. [1 ]
机构
[1] Natl Inst Stand & Technol, Stat Engn Div, Gaithersburg, MD 20899 USA
关键词
Binet-Cauchy formula; Dirichlet averages; elementary symmetric functions; elliptic integrals; multilinear forms; quadratic forms in normal vectors; Schur product; zonal polynomials;
D O I
10.3103/S1066530709040048
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies properties of conservative confidence ellipsoids for parameters of a general linear model. These regions are obtained on the basis of a linear estimator when only a vague knowledge of (heterogeneous) error variances is available. The required optimization problem is formulated and the solution space is described. The relationship of this problem to moments of quadratic forms in Gaussian random variables and to multiple hypergeometric functions is demonstrated. We explore the situation when the least favorable variances are equal. An example of a telephone switching study is considered.
引用
收藏
页码:375 / 396
页数:22
相关论文
共 50 条