SUBGEOMETRIC RATES OF CONVERGENCE OF F-ERGODIC MARKOV-CHAINS

被引:103
|
作者
TUOMINEN, P [1 ]
TWEEDIE, RL [1 ]
机构
[1] COLORADO STATE UNIV,DEPT STAT,FT COLLINS,CO 80523
关键词
IRREDUCIBLE MARKOV PROCESSES; ERGODICITY; HARRIS RECURRENCE; INVARIANT MEASURES; GEOMETRIC ERGODICITY; RANDOM WALK; STATE SPACE MODELS;
D O I
10.2307/1427820
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let PHI = {PHI(n)} be an aperiodic, positive recurrent Markov chain on a general state space, pi its invariant probability measure and f greater-than-or-equal-to 1. We consider the rate of (uniform) convergence of E(x)[g(PHI(n)] to the stationary limit pi(g) for \g\less-than-or-equal-to f: specifically, we find conditions under which [GRAPHICS] as n --> infinity, for suitable subgeometric rate functions r. We give sufficient conditions for this convergence to hold in terms of (i) the existence of suitably regular sets, i.e. sets on which (f, r)-modulated hitting time moments are bounded, and (ii) the existence of (f, r)-modulated drift conditions (Foster-Lyapunov conditions). The results are illustrated for random walks and for more general state space models.
引用
收藏
页码:775 / 798
页数:24
相关论文
共 50 条
  • [1] Subgeometric rates of convergence of f-ergodic strong Markov processes
    Douc, Randal
    Fort, Gersende
    Guillin, Arnaud
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (03) : 897 - 923
  • [2] QUANTITATIVE CONVERGENCE RATES FOR SUBGEOMETRIC MARKOV CHAINS
    Andrieu, Christophe
    Fort, Gersende
    Vihola, Matti
    [J]. JOURNAL OF APPLIED PROBABILITY, 2015, 52 (02) : 391 - 404
  • [3] Subgeometric rates of convergence in Wasserstein distance for Markov chains
    Durmus, Alain
    Fort, Gersende
    Moulines, Eric
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1799 - 1822
  • [4] CONVERGENCE-RATES FOR MARKOV-CHAINS
    ROSENTHAL, JS
    [J]. SIAM REVIEW, 1995, 37 (03) : 387 - 405
  • [5] RATES OF CONVERGENCE FOR EVERYWHERE-POSITIVE MARKOV-CHAINS
    BAXTER, JR
    ROSENTHAL, JS
    [J]. STATISTICS & PROBABILITY LETTERS, 1995, 22 (04) : 333 - 338
  • [6] AN ERGODIC THEOREM FOR HOMOGENEOUS MARKOV-CHAINS
    NAGAEV, SV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1982, 263 (01): : 27 - 30
  • [7] On the convergence of stochastic approximations under a subgeometric ergodic Markov dynamic
    Debavelaere, Vianney
    Durrleman, Stanley
    Allassonniere, Stephanie
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1583 - 1609
  • [8] ON THE CONVERGENCE OF REVERSIBLE MARKOV-CHAINS
    DESAI, MP
    RAO, VB
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) : 950 - 966
  • [9] Subexponential lower bounds for f-ergodic Markov processes
    Bresar, Miha
    Mijatovic, Aleksandar
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2024,
  • [10] THE ERGODIC COEFFICIENT, MARKOV-CHAINS, AND THE THEORY OF INFORMATION
    ROSENBLATTROTH, M
    [J]. BULLETIN OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1965, 41 (02): : 629 - 630