MINIMAL TORI IN S2XS1

被引:1
|
作者
HSIEH, CC [1 ]
WANG, AN [1 ]
机构
[1] NATL TAIWAN UNIV,DEPT MATH,TAIPEI,TAIWAN
关键词
MINIMAL SURFACE; RICCI CURVATURE;
D O I
10.2307/2160879
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Choi and Schoen (1985) have shown that for a positively Ricci curved three-fold M, the family of embedded minimal surfaces of a fixed genus is compact. It is of interest to know how much the positivity condition can be relaxed.
引用
收藏
页码:323 / 324
页数:2
相关论文
共 50 条
  • [1] RANK OF S2XS1
    ROSENBERG, H
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1965, 87 (01) : 11 - +
  • [2] Bott integrable Hamiltonian systems on S2xS1
    Cordero, Alicia
    Martinex Alfaro, Jose
    Vindel, Pura
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 22 (03) : 587 - 604
  • [3] IMPOSSIBILITY OF OBTAINING S2XS1 BY ELEMENTARY SURGERY ALONG A KNOT
    MOSER, LE
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1974, 53 (02) : 519 - 523
  • [4] Toric Degeneration and Nondisplaceable Lagrangian Tori in S2xS2
    Fukaya, Kenji
    Oh, Yong-Geun
    Ohta, Hiroshi
    Ono, Kaoru
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (13) : 2942 - 2993
  • [5] MINIMAL TORI IN S(4)
    FERUS, D
    PEDIT, F
    PINKALL, U
    STERLING, I
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1992, 429 : 1 - 47
  • [6] Minimal Lagrangian surfaces in S2xS2
    Castro, Ildefonso
    Urbano, Francisco
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2007, 15 (02) : 217 - 248
  • [7] S-1-EQUIVARIANT MINIMAL TORI IN S-4 AND S-1-EQUIVARIANT WILLMORE TORI IN S-3
    FERUS, D
    PEDIT, F
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1990, 204 (02) : 269 - 282
  • [9] ON THE UNIQUENESS OF INVARIANT TORI IN D(4)XS(1) SYMMETRICAL SYSTEMS
    VANGILS, SA
    SILBER, M
    [J]. NONLINEARITY, 1995, 8 (04) : 615 - 628
  • [10] S1XS2 WORMHOLES
    KEAY, BJ
    LAFLAMME, R
    [J]. PHYSICAL REVIEW D, 1989, 40 (06): : 2118 - 2120