SOME RESULTS ON LINEAR CODES OVER THE FINITE RING Z(4)+ uZ(4)

被引:0
|
作者
Dertli, Abdullah [1 ]
Cengellenmis, Yasemin
机构
[1] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55139 Kurupelit, Turkey
来源
关键词
linear codes; finite ring; MacWilliams identities; MDS code;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the MacWilliams identities for the linear codes over D = Z(4)+ uZ(4) + vZ(4), u(2) = u,v(2) = v,uv = vu = 0 are studied and some properties of MDS codes over D are discussed.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条
  • [1] Some results on linear codes over the ring Z4
    Li, Ping
    Guo, Xuemei
    Zhu, Shixin
    Kai, Xiaoshan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 307 - 324
  • [2] ON THE LINEAR CODES OVER THE RING Z4
    Dertli, Abdullah
    Cengellenmis, Yasemin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 809 - 823
  • [3] Linear Codes over the Ring Z4+uZ4+vZ4+wZ4+uvZ4+uwZ4+vwZ4+uvwZ4
    Bustomi
    Santika, Aditya Purwa
    Suprijanto, Djoko
    IAENG International Journal of Computer Science, 2021, 48 (03) : 1 - 11
  • [4] DUADIC CODES OVER Z4 + uZ4
    Kumar, Raj
    Bhaintwal, Maheshanand
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, : 404 - 417
  • [5] Cyclic codes over Z4 + uZ4
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 47 - 51
  • [6] (σ, δ)-Skew quasi-cyclic codes over the ring Z4 + uZ4
    Ma, Fanghui
    Gao, Jian
    Li, Juan
    Fu, Fang-Wei
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (02): : 307 - 320
  • [7] Cyclic codes over Z4 + uZ4 + u2Z4
    Ozen, Mehmet
    Ozzaim, Nazmiye Tugba
    Aydin, Nuh
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1235 - 1247
  • [8] Linear codes over Z4 + uZ4: MacWilliams identities, projections, and formally self-dual codes
    Yildiz, Bahattin
    Karadeniz, Suat
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 27 : 24 - 40
  • [9] A COMPLETE STRUCTURE OF SKEW CYCLIC CODES OVER Z4+uZ4
    Shah, Saumya
    Sharma, Amit
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023,
  • [10] Negacyclic codes of length 2(k) over Z4+uZ(4)
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (03) : 454 - 470