EMPIRICAL BAYES ESTIMATION OF THE COVARIANCE-MATRIX OF A NORMAL-DISTRIBUTION WITH UNKNOWN MEAN UNDER AN ENTROPY LOSS

被引:0
|
作者
KUBOKAWA, T
ROBERT, C
SALEH, AKME
机构
[1] CARLETON UNIV,DEPT MATH & STAT,OTTAWA K1S 5B6,ONTARIO,CANADA
[2] UNIV TSUKUBA,TSUKUBA,IBARAKI 30031,JAPAN
[3] UNIV PARIS 06,PARIS,FRANCE
关键词
COVARIANCE MATRIX; GENERALIZED VARIANCE; EMPIRICAL BAYES ESTIMATOR;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the estimation of the covariance matrix of the multivariate normal distribution with unknown mean vector, Sinha and Ghosh (1987) proposed & truncated estimator improving on the best invariant one relative to the entropy loss. The purpose of the paper is to derive an empirical Bayes estimator based on conjugate priors and to prove that it is than the Sinha-Ghosh estimator. An empirical Bayes estimator for the generalized variance is also given and it is shown to be identical to the usual Stein type truncated est mator.
引用
收藏
页码:402 / 410
页数:9
相关论文
共 50 条