ON SPECTRAL VARIATION OF A NON-NORMAL MATRIX

被引:6
|
作者
JIANG, E [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
关键词
D O I
10.1016/0024-3795(82)90151-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:223 / 241
页数:19
相关论文
共 50 条
  • [1] ON THE SPECTRAL-SUBSPACES OF THE NON-NORMAL OPERATORS
    LI, SK
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 1982, 3 (03): : 303 - 308
  • [2] CONVERGENCE OF THE SPECTRAL MEASURE OF NON-NORMAL MATRICES
    Guionnet, Alice
    Wood, Philip Matchett
    Zeitouni, Ofer
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (02) : 667 - 679
  • [3] Eigenvalue estimates for the resolvent of a non-normal matrix
    Szehr, Oleg
    [J]. JOURNAL OF SPECTRAL THEORY, 2014, 4 (04) : 783 - 813
  • [4] The analysis of variance in cases of non-normal variation.
    Pearson, ES
    [J]. BIOMETRIKA, 1931, 23 : 114 - 133
  • [5] A Cartan-Eilenberg spectral sequence for non-normal extensions
    Belmont, Eva
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 224 (04)
  • [6] ON NON-NORMAL NUMBERS
    COLEBROO.CM
    KEMPERMA.JH
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1968, 71 (01): : 1 - &
  • [7] NON-NORMAL NUMBERS
    ODLYZKO, A
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (02): : 141 - 142
  • [8] NON-NORMAL PULSATION
    Yecko, P.
    Pohlmeyer, J.
    [J]. NONLINEAR PULSATIONS AND HYDRODYNAMICS OF CEPHEIDS, 2009, 38 : 25 - 32
  • [9] Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions
    Ikeda, Yuki
    Kubokawa, Tatsuya
    Srivastava, Muni S.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 95 : 95 - 108
  • [10] The Incidence Matrix of the Non-Normal Subgroup Graph for Some Dihedral Groups
    Rahin, Nabilah Fikriah
    Sarmin, Nor Haniza
    Ilangovan, Sheila
    [J]. PROCEEDINGS OF THE 27TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM27), 2020, 2266