ESTIMATING FRACTAL DIMENSION OF PROFILES - A COMPARISON OF METHODS

被引:76
|
作者
GALLANT, JC [1 ]
MOORE, ID [1 ]
HUTCHINSON, MF [1 ]
GESSLER, P [1 ]
机构
[1] CSIRO,DIV SOILS,CANBERRA,ACT 2601,AUSTRALIA
来源
MATHEMATICAL GEOLOGY | 1994年 / 26卷 / 04期
关键词
POWER SPECTRUM; MAXIMUM ENTROPY; SEMI-VARIOGRAM; ROUGHNESS-LENGTH; CONFIDENCE INTERVAL;
D O I
10.1007/BF02083489
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper examines the characteristics of four different methods of estimating the fractal dimension of profiles. The semi-variogram, roughness-length, and two spectral methods are compared using synthetic 1024-point profiles generated by three methods, and using two profiles derived from a gridded DEM and two profiles from a laser-scanned soil surface. The analysis concentrates on the Hurst exponent H, which is linearly related to fractal dimension D, and considers both the accuracy and the variability of the estimates of H. The estimation methods are found to be quite consistent for H near 0.5, but the semivariogram method appears to be biased for H approaching 0 and 1, and the roughness-length method for H approaching 0. The roughness-length or the maximum entropy spectral methods are recommended as the most suitable methods for estimating the fractal dimension of topographic profiles. The fractal model fitted the soil surface data at fine scales but not a broad scales, and did not appear to fit the DEM profiles well at any scale.
引用
收藏
页码:455 / 481
页数:27
相关论文
共 50 条
  • [1] Comparison of Fractal Dimension Calculation Methods for Channel Bed Profiles
    Zhong Liang
    Zeng Feng
    Xu Guangxiang
    [J]. 2012 INTERNATIONAL CONFERENCE ON MODERN HYDRAULIC ENGINEERING, 2012, 28 : 252 - 257
  • [2] ESTIMATING FRACTAL DIMENSION
    THEILER, J
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1990, 7 (06): : 1055 - 1073
  • [3] ESTIMATING THE DIMENSION OF A FRACTAL
    TAYLOR, CC
    TAYLOR, SJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1991, 53 (02): : 353 - 364
  • [4] New Methods for Estimating the Dimension Fractal Introducing the Artificial Intelligence
    A. Zerroug
    D. Schoëvaërt-Brossault
    S. Rebiai
    [J]. Acta Applicandae Mathematicae, 2010, 109 : 1043 - 1051
  • [5] New Methods for Estimating the Dimension Fractal Introducing the Artificial Intelligence
    Zerroug, A.
    Schoevaert-Brossault, D.
    Rebiai, S.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) : 1043 - 1051
  • [6] COMPARISON OF METHODS FOR ESTIMATING THE DIMENSION OF A SIGNAL MODEL
    BELLOW, ME
    [J]. AMERICAN STATISTICAL ASSOCIATION 1988 PROCEEDINGS OF THE STATISTICAL COMPUTING SECTION, 1988, : 212 - 217
  • [7] ON THE PRACTICE OF ESTIMATING FRACTAL DIMENSION
    CARR, JR
    BENZER, WB
    [J]. MATHEMATICAL GEOLOGY, 1991, 23 (07): : 945 - 958
  • [8] Comparison of local and global fractal dimension determination methods
    Veronig, A
    Hanslmeier, A
    Messerotti, M
    [J]. DYNAMIC SUN, PROCEEDINGS, 2001, 259 : 315 - 318
  • [9] EVALUATING THE FRACTAL DIMENSION OF PROFILES
    DUBUC, B
    QUINIOU, JF
    ROQUESCARMES, C
    TRICOT, C
    ZUCKER, SW
    [J]. PHYSICAL REVIEW A, 1989, 39 (03) : 1500 - 1512
  • [10] A comparative study of fractal dimension calculation methods for rough surface profiles
    Chen, Zhiying
    Liu, Yong
    Zhou, Ping
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 112 : 24 - 30