On the diophantine equation D(1)x(2)+D-2=k(n)

被引:0
|
作者
Xu, TJ [1 ]
Le, MH [1 ]
机构
[1] ZHANJIANG TEACHERS COLL,DEPT MATH,ZHANJIANG,PEOPLES R CHINA
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1995年 / 47卷 / 3-4期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D, D-1, D-2, k be positive integers such that D = D-1 D-2, D-1 > 1, D-2 > 1, k > 1 and gcd(D-1, D-2) = gcd(D, k) = 1. Let w(k) be the number of distinct prime factors of k. Further, let N(D-1, D-2, k) be the number of positive integer solutions (x, n) of the equation D(1)x(2) + D-2 = k(n). In this paper, we prove that if 2 inverted iota k and max(D-1, D-2) > exp exp exp 105, then N(D-1, D-2, k) less than or equal to 2(w(k)-1) + 1 or 2(w(k)-1) according as the triple (D-1, D-2, k) is exceptional or not. The above upper bound is the best possible if k is a prime.
引用
收藏
页码:293 / 297
页数:5
相关论文
共 50 条