MODELING AND SIMULATING HIGHER DIMENSIONAL CHAOTIC DATA

被引:2
|
作者
GORA, P
BOYARSKY, A
机构
[1] Department of Mathematics Concordia University, H4B 1R6, Loyola Campus Montreal
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0898-1221(92)90035-G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider time series data whose estimated Lyapunov exponents are positive. This data is represented by a probability density function on a suitably fine partition of the phase space. An algorithm is presented for constructing a transformation tau which has a unique absolutely continuous invariant measure whose density function is f and which has the same Lyapunov exponents as the original time series. An example is given.
引用
下载
收藏
页码:101 / 105
页数:5
相关论文
共 50 条
  • [1] ON HIGHER DIMENSIONAL CONSTRAINED AUTONOMOUS CHAOTIC CIRCUITS
    SAITO, T
    1989 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, 1989, : 2144 - 2146
  • [2] Assisted chaotic inflation in higher dimensional theories
    Kanti, P
    Olive, KA
    PHYSICS LETTERS B, 1999, 464 (3-4) : 192 - 198
  • [3] A higher dimensional chaotic map with discrete memristor
    Peng, Yuexi
    He, Shaobo
    Sun, Kehui
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2021, 129
  • [4] Chaotic oscillations in higher-dimensional systems - Introduction
    Kapitaniak, T
    CHAOS SOLITONS & FRACTALS, 2003, 15 (02) : 201 - 203
  • [5] Coded modulation based on higher dimensional chaotic maps
    Kozic, S
    Schimming, T
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 888 - 891
  • [6] Fractal dimension of higher-dimensional chaotic repellors
    Sweet, D
    Ott, E
    PHYSICA D, 2000, 139 (1-2): : 1 - 27
  • [7] Modeling and Predicting Chaotic Circuit Data
    Xu, Wanting
    Stein, Michael L.
    Wisher, Ian
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (01): : 31 - 52
  • [8] Simulating a chaotic process
    Viana, RL
    Barbosa, JRR
    Grebogi, C
    Batista, AM
    BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (01) : 139 - 147
  • [9] Fractal basin boundaries in higher-dimensional chaotic scattering
    Sweet, D
    Ott, E
    PHYSICS LETTERS A, 2000, 266 (2-3) : 134 - 139
  • [10] CHAOTIC BEHAVIOR OF HIGHER DIMENSIONAL TRANSFORMATIONS DEFINED ON COUNTABLE PARTITIONS
    Boyarsky, A.
    Lou, Y. S.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (04): : 1045 - 1049