POSITIVE VALUES OF NONHOMOGENEOUS INDEFINITE QUADRATIC-FORMS OF TYPE (2, 5)

被引:0
|
作者
SEHMI, R
DUMIR, VC
机构
[1] PANJAB ENGN COLL,DEPT APPL SCI,CHANDIGARH 160012,INDIA
[2] PANJAB UNIV,CTR ADV STUDY MATH,CHANDIGARH 160014,INDIA
关键词
D O I
10.1006/jnth.1994.1049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The minimum GAMMA(r,n-r) of positive values of non-homogeneous indefinite quadratic forms of type (r, n - r) is defined as the infimum of all constants GAMMA > 0 such that for any indefinite quadratic form Q of type (r, n - r) and determinant D not-equal 0 and any real numbers c1, ..., c(n) there exist integers x1, ..., x(n) such that 0 < Q(x1 + c1, ..., x(n) + c(n)) < (GAMMA\D\)1/n. In this paper it is proved that GAMMA2.5 = 32, thereby confirming the conjecture of Bambah, Dumir, and Hans-Gill. Also, all the critical forms for which equality is needed are determined. (C) 1994 Academic Press, Inc.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 50 条