2 MATERIAL MODELS FOR CYCLIC PLASTICITY - NONLINEAR KINEMATIC HARDENING AND GENERALIZED PLASTICITY

被引:70
|
作者
AURICCHIO, F
TAYLOR, RL
机构
[1] Department of Civil Engineering University of California at Berkeley, Berkeley
关键词
D O I
10.1016/0749-6419(94)00039-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We present a comparative study between a nonlinear kinematic hardening model and a generalized plasticity model. The two models are reviewed and discussed from both continuous and discrete time points of view. The integration of the discrete models based on a return map algorithm is also addressed. The form of the elastoplastic tangent tensors consistent with both the continuous and the discrete versions is discussed; in particular, the latter guarantees quadratic convergence for a Newton method, frequently adopted in an incremental solution scheme. Finally, numerical examples for uniaxial and multiaxial cyclic loading conditions are presented.
引用
收藏
页码:65 / 98
页数:34
相关论文
共 50 条
  • [1] Cyclic Behavior and Plasticity w of Simple Models in Hypoplasticity and Nonlinear Kinematic Hardening
    Kovtunenko, Victor A.
    Bauer, Erich
    Elias, Jan
    Krejci, Pavel
    Monteiro, Giselle A.
    Strakova, Lenka
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (06): : 756 - 767
  • [2] NUMERICAL ALGORITHMS FOR PLASTICITY MODELS WITH NONLINEAR KINEMATIC HARDENING
    De Angelis, Fabio
    Taylor, Robert L.
    [J]. 11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS V - VI, 2014, : 6560 - 6570
  • [3] GENERALIZED KINEMATIC HARDENING THEORY OF PLASTICITY
    TANAKA, M
    MIYAGAWA, Y
    [J]. INGENIEUR ARCHIV, 1975, 44 (04): : 255 - 268
  • [4] NONLINEAR KINEMATIC HARDENING PLASTICITY THEORY
    RASHID, YR
    [J]. NUCLEAR ENGINEERING AND DESIGN, 1974, 29 (01) : 135 - 140
  • [5] Implementation of cyclic plasticity models based on a general form of kinematic hardening
    Kobayashi, M
    Ohno, N
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (09) : 2217 - 2238
  • [6] USE OF KINEMATIC HARDENING MODELS IN MULTI-AXIAL CYCLIC PLASTICITY
    HANCELL, PJ
    HARVEY, SJ
    [J]. FATIGUE OF ENGINEERING MATERIALS AND STRUCTURES, 1979, 1 (03): : 271 - 279
  • [7] Material models of cyclic plasticity with extended isotropic hardening: a review
    Ohno, Nobutada
    [J]. MECHANICAL ENGINEERING REVIEWS, 2015, 2 (01):
  • [8] APPLICATION OF KINEMATIC HARDENING MODELS TO CYCLIC PLASTICITY STRUCTURAL-ANALYSIS PROBLEMS
    GHASSEMIEH, M
    KUKRETI, AR
    [J]. COMPUTERS & STRUCTURES, 1993, 46 (04) : 633 - 647
  • [9] ON A CLASS OF KINEMATIC HARDENING RULES FOR NONPROPORTIONAL CYCLIC PLASTICITY
    MOOSBRUGGER, JC
    MCDOWELL, DL
    [J]. JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1989, 111 (01): : 87 - 98
  • [10] 2 EQUIVALENT FORMS OF NONLINEAR KINEMATIC HARDENING - APPLICATION TO NONISOTHERMAL PLASTICITY
    WANG, JD
    OHNO, N
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 1991, 7 (07) : 637 - 650