PRECONDITIONED BICONJUGATE GRADIENT METHODS FOR NUMERICAL RESERVOIR SIMULATION

被引:10
|
作者
JOLY, P [1 ]
EYMARD, R [1 ]
机构
[1] SOC NATL ELF AQUITAINE,SMG,TOUR ELF AQUITAINE,F-92078 PARIS 45,FRANCE
关键词
D O I
10.1016/0021-9991(90)90039-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes numerical experiments on solving linear systems of equations that arise in reservoir simulations. The well-known conjugate-gradient methods Orthomin and Gmres are compared to the biconjugate-gradient method and to an accelerated version called the conjugate-gradient squared method. An incomplete factorization technique based on the level of fill-in idea is used, with investigations to find the appropriate level. Finally, the influence of a reordering method on the convergence rate is tested. © 1990.
引用
收藏
页码:298 / 309
页数:12
相关论文
共 50 条
  • [1] NUMERICAL TESTS WITH BICONJUGATE GRADIENT TYPE METHODS
    SCHONAUER, W
    MULLER, H
    SCHNEPF, E
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (05): : T400 - T402
  • [2] Preconditioned tensor format conjugate gradient squared and biconjugate gradient stabilized methods for solving stein tensor equations
    Chen, Yuhan
    Li, Chenliang
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (05)
  • [3] THE APPLICATION OF THE PRECONDITIONED BICONJUGATE GRADIENT ALGORITHM TO NLTE RATE MATRIX EQUATIONS
    KAUSHIK, S
    HAGELSTEIN, PL
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 101 (02) : 360 - 367
  • [4] Solving finite difference linear systems on GPUs: CUDA based Parallel Explicit Preconditioned Biconjugate Conjugate Gradient type Methods
    G. A. Gravvanis
    C. K. Filelis-Papadopoulos
    K. M. Giannoutakis
    [J]. The Journal of Supercomputing, 2012, 61 : 590 - 604
  • [5] Solving finite difference linear systems on GPUs: CUDA based Parallel Explicit Preconditioned Biconjugate Conjugate Gradient type Methods
    Gravvanis, G. A.
    Filelis-Papadopoulos, C. K.
    Giannoutakis, K. M.
    [J]. JOURNAL OF SUPERCOMPUTING, 2012, 61 (03): : 590 - 604
  • [6] Stochastic Gradient Methods with Preconditioned Updates
    Abdurakhmon Sadiev
    Aleksandr Beznosikov
    Abdulla Jasem Almansoori
    Dmitry Kamzolov
    Rachael Tappenden
    Martin Takáč
    [J]. Journal of Optimization Theory and Applications, 2024, 201 : 471 - 489
  • [7] Stochastic Gradient Methods with Preconditioned Updates
    Sadiev, Abdurakhmon
    Beznosikov, Aleksandr
    Almansoori, Abdulla Jasem
    Kamzolov, Dmitry
    Tappenden, Rachael
    Takac, Martin
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (02) : 471 - 489
  • [8] On Finding a Density in a Curvilinear Layer by Biconjugate Gradient Type Methods
    Akimova, Elena N.
    Martyshko, Peter S.
    Misilov, Vladimir E.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [9] The BiConjugate gradient method on GPUs
    G. Ortega
    E. M. Garzón
    F. Vázquez
    I. García
    [J]. The Journal of Supercomputing, 2013, 64 : 49 - 58
  • [10] The BiConjugate gradient method on GPUs
    Ortega, G.
    Garzon, E. M.
    Vazquez, F.
    Garcia, I.
    [J]. JOURNAL OF SUPERCOMPUTING, 2013, 64 (01): : 49 - 58