ROLE OF EXONUCLEASE IN THE SPECIFICITY OF BACTERIOPHAGE-T7 DNA PACKAGING

被引:13
|
作者
SON, M [1 ]
SERWER, P [1 ]
机构
[1] UNIV TEXAS, HLTH SCI CTR, DEPT BIOCHEM, SAN ANTONIO, TX 78284 USA
关键词
D O I
10.1016/0042-6822(92)90920-K
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
During morphogenesis in vivo, bacteriophage T7 packages and cuts to mature size an end-to-end concatemer of its nonpermuted, terminally repetitious, double-stranded, mature DNA. Efficient production (90-100%) and packaging (20-35%) of concatemers has also been demonstrated in extracts of T7-infected cells (in vitro) (Son, M., Hayes, S. J., and Serwer, P. [1988] Virology 162, 38-46). By use of both this procedure of in vitro DNA packaging and in-gel hybridization to packaged DNA fractionated by agarose gel electrophoresis, the specificity of packaging in vitro is found to depend on the presence of T7 gene 6 exonuclease (p6). In the absence of p6 in vitro, no concatemerization is detected and packaging of DNA nonhomologous to T7 DNA (bacteriophage P22 DNA) is as efficient (0.05-1.10/6) as the packaging of monomeric T7 DNA. Addition of p6 in vitro both stimulates the concatemerization-packaging of T7 DNA and suppresses the packaging of P22 DNA. The packaging efficiency for concatemeric T7 DNA is 29-611 × higher than that for monomeric T7 DNA. Inhibition of the packaging of P22 DNA by p6 is correlated with the formation of single-stranded P22 DNA ends. These data are explained by the hypothesis that a DNA molecule with a single-stranded end is packaged less efficiently than the same DNA without the single-stranded end. Testing this hypothesis in vivo reveals that both p6 and gene 3 endonuclease contribute to suppressing the packaging of host DNA. © 1992.
引用
收藏
页码:824 / 833
页数:10
相关论文
共 50 条