EARTH REMOTE SENSING DATA PROCESSING TECHNOLOGY FOR OBTAINING VEGETATION TYPES MAPS

被引:5
|
作者
Varlamova, A. A. [1 ]
Denisova, A. Y. [1 ]
Sergeev, V. V. [1 ,2 ]
机构
[1] Samara Univ, Moskovskoe Shosse 34, Samara 443086, Russia
[2] Russian Acad Sci, Branch Fed Sci Res Ctr Crystallog & Photon, Image Proc Syst Inst, Molodogvardeiskaya St 151, Samara 443001, Russia
基金
俄罗斯基础研究基金会;
关键词
superpixel segmentation; clustering; vegetation regions; percentage composition;
D O I
10.18287/2412-6179-2018-42-5-864-876
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we propose an earth remote sensing data processing technology for obtaining vegetation types maps. The technology includes the following steps: obtaining superpixel representation of an image, calculating superpixel features, K-Means clustering of superpixels by a user-defined training sample, and obtaining vegetation types maps. When compared to other solutions, the major difference of the proposed technology is the ability to combine superpixel segmentation and feature calculation into a single process in one pass of an image that reduces the computational complexity. Another difference lies in the way of forming a sample dataset using superpixel representation of an image. The advantages of the proposed technology are the use of a smaller training dataset and a higher classification quality in comparison with the elemental classification.
引用
收藏
页码:864 / 876
页数:13
相关论文
共 50 条
  • [1] Software for earth remote sensing data processing
    Asmus, VV
    Buchnev, AA
    Pyatkin, VP
    [J]. Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology - Signal and Image Processing, 2005, : 1 - 4
  • [2] System Information Model of Obtaining and Using Data of Remote Sensing the Earth
    Samoilenko, L. I.
    Baulin, S. A.
    Ilyenko, T. V.
    Kirnosova, M. A.
    Kolos, L. N.
    Podgorodetskaya, L. V.
    [J]. JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2008, 40 (11) : 46 - 56
  • [3] Software technologies for processing of earth remote sensing data
    Buchnev A.A.
    Pyatkin V.P.
    Rusin E.V.
    [J]. Pattern Recognition and Image Analysis, 2013, 23 (4) : 474 - 480
  • [4] Classification system in the software of the Earth remote sensing data processing
    Asmus V.V.
    Buchnev A.A.
    Pyatkin V.P.
    [J]. Pattern Recognition and Image Analysis, 2009, 19 (01) : 69 - 74
  • [5] Environmental Assessment of Soil and Vegetation in the Vicinity of a Mining and Processing Plant on the Basis of Earth Remote-Sensing Data
    M. V. Evdokimova
    A. S. Yakovlev
    [J]. Moscow University Soil Science Bulletin, 2023, 78 (1) : 22 - 31
  • [6] Grid technology for the storage and processing of remote sensing data: description of an application
    Giovanni, NA
    Luigi, FB
    Linford, J
    [J]. SENSORS, SYSTEMS AND NEXT-GENERATION SATELLITES VI, 2003, 4881 : 677 - 685
  • [7] Software system for satellite data processing of applied tasks in remote sensing of the Earth
    Asmus V.V.
    Buchnev A.A.
    Pyatkin V.P.
    Salov G.I.
    [J]. Pattern Recognition and Image Analysis, 2009, 19 (03) : 372 - 379
  • [8] Development of IT integration tools for problems of thematic processing of Earth remote sensing data
    Engel, M. V.
    Belov, V. V.
    Tarasenkov, M. V.
    Gridnev, Yu. V.
    [J]. 22ND INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2016, 10035
  • [9] NON-PARAMETRIC APPROACH FOR PRELIMINARY PROCESSING OF EARTH REMOTE SENSING DATA
    Denisov, Maksim A.
    Chzhan, Ekaterina A.
    Korneeva, Anna A.
    [J]. REGIONAL PROBLEMS OF EARTH REMOTE SENSING (RPERS 2018), 2019, 75
  • [10] Quantifying landscape structure with vegetation inventory maps and remote sensing
    Franklin, SE
    Hansen, MJ
    Stenhouse, GB
    [J]. FORESTRY CHRONICLE, 2002, 78 (06): : 866 - 875