HETEROSCEDASTIC G-OPTIMAL DESIGNS

被引:0
|
作者
WONG, WK [1 ]
COOK, RD [1 ]
机构
[1] UNIV MINNESOTA,MINNEAPOLIS,MN 55455
关键词
DESIGN EFFICIENCY; D-OPTIMAL; G-OPTIMAL; HETEROSCEDASTICITY; INFORMATION MATRIX; LARGE SAMPLE DESIGN;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper addresses the issue of constructing large sample G-optimal designs when the variability of the response varies across a compact design space. A useful characterization theorem is presented along with a computer algorithm for generating (heteroscedastic) G-optimal designs. To facilitate comparisons between D- and G-optimal designs, Atwood's inequality for comparing D- and G-efficiencies in homoscedastic models is generalized to heteroscedastic models. Some robustness properties of these designs are presented.
引用
下载
收藏
页码:871 / 880
页数:10
相关论文
共 50 条
  • [1] G-OPTIMAL DESIGNS FOR MULTIFACTOR EXPERIMENTS WITH HETEROSCEDASTIC ERRORS
    WONG, WK
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 40 (01) : 127 - 133
  • [2] ON THE EQUIVALENCE OF D-OPTIMAL AND G-OPTIMAL DESIGNS IN HETEROSCEDASTIC MODELS
    WONG, WK
    STATISTICS & PROBABILITY LETTERS, 1995, 25 (04) : 317 - 321
  • [3] Near G-optimal Tchakaloff designs
    Len Bos
    Federico Piazzon
    Marco Vianello
    Computational Statistics, 2020, 35 : 803 - 819
  • [4] Near G-optimal Tchakaloff designs
    Bos, Len
    Piazzon, Federico
    Vianello, Marco
    COMPUTATIONAL STATISTICS, 2020, 35 (02) : 803 - 819
  • [5] Generating and Assessing Exact G-Optimal Designs
    Rodriguez, Myrta
    Jones, Bradley
    Borror, Connie M.
    Montgomery, Douglas C.
    JOURNAL OF QUALITY TECHNOLOGY, 2010, 42 (01) : 3 - 20
  • [6] G-optimal exact designs for quadratic regression
    Imhof, Lorens A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 154 : 133 - 140
  • [7] G-optimal grid designs for kriging models
    Dasgupta, Subhadra
    Mukhopadhyay, Siuli
    Keith, Jonathan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (03) : 1061 - 1085
  • [8] Fast Computation of Exact G-Optimal Designs Via Iλ-Optimality
    Hernandez, Lucia N.
    Nachtsheim, Christopher J.
    TECHNOMETRICS, 2018, 60 (03) : 297 - 305
  • [9] COMPARING ROBUST PROPERTIES OF A-OPTIMAL, D-OPTIMAL, E-OPTIMAL AND G-OPTIMAL DESIGNS
    WONG, WK
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1994, 18 (04) : 441 - 448
  • [10] A non-approximate method for generating G-optimal RSM designs
    Hansen, Hyrum J.
    Walsh, Stephen J.
    Pan, Rong
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024,