FUNCTIONAL-CHARACTERIZATION AND TRANSCRIPTIONAL ANALYSIS OF A GENE-CLUSTER GOVERNING EARLY AND LATE STEPS IN DAUNORUBICIN BIOSYNTHESIS IN STREPTOMYCES-PEUCETIUS
Sequence analysis of the Streptomyces peucetius daunorubicin biosynthetic gene cluster revealed a partial (dnrQ) and two complete (dnrD and dnrP) open reading frames flanking dnrK. Bioconversion experiments showed that DnrD converts aklanonic acid methylester to aklaviketone and that DnrC is a methyltransferase that converts aklanonic acid to aklanonic acid methylester. The deduced dnrP gene product, homologous to known esterases, may catalyze the conversion of 10-carbomethoxy-13-deoxycarminomycin to its 10-carboxy derivative. The dnrKPQS genes may be transcribed as a polycistronic mRNA.