MONTE-CARLO STUDY OF INFINITE-DIMENSIONAL CELLULAR AUTOMATA

被引:0
|
作者
ZABOLITZKY, JG
机构
[1] UNIV MINNESOTA,MINNESOTA SUPERCOMP INST,MINNEAPOLIS,MN 55455
[2] UNIV MINNESOTA,SCH PHYS & ASTRON,MINNEAPOLIS,MN 55455
来源
PHYSICA A | 1990年 / 163卷 / 02期
关键词
D O I
10.1016/0378-4371(90)90136-G
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The well-known one-dimensional elementary cellular automata are generalized to an infinite number of dimensions. The generalization of the most interesting automaton in 1D, "Rule 22", is studied in detail by means of Monte Carlo as well as enumeration methods. It is shown that Monte Carlo data extrapolate very smoothly to infinite system size. Numerical deviation from mean-field theory is analyzed. © 1990.
引用
收藏
页码:447 / 457
页数:11
相关论文
共 50 条
  • [1] Infinite-dimensional Monte-Carlo integration
    Pantsulaia, Gogi R.
    MONTE CARLO METHODS AND APPLICATIONS, 2015, 21 (04): : 283 - 299
  • [2] Unbiased Monte Carlo: Posterior estimation for intractable/infinite-dimensional models
    Agapiou, Sergios
    Roberts, Gareth O.
    Vollmer, Sebastian J.
    BERNOULLI, 2018, 24 (03) : 1726 - 1786
  • [3] A COMPARISON OF MONTE-CARLO AND CELLULAR AUTOMATA APPROACHES FOR SEMICONDUCTOR-DEVICE SIMULATION
    ZANDLER, G
    DICARLO, A
    KOMETER, K
    LUGLI, P
    VOGL, P
    GORNIK, E
    IEEE ELECTRON DEVICE LETTERS, 1993, 14 (02) : 77 - 79
  • [4] Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN
    Hickernell, Fred J.
    Mueller-Gronbach, Thomas
    Niu, Ben
    Ritter, Klaus
    JOURNAL OF COMPLEXITY, 2010, 26 (03) : 229 - 254
  • [5] Quantum Monte Carlo study of the transverse-field quantum Ising model on infinite-dimensional structures
    Baek, Seung Ki
    Um, Jaegon
    Do Yi, Su
    Kim, Beom Jun
    PHYSICAL REVIEW B, 2011, 84 (17)
  • [6] DIMENSIONAL REDUCTION BY MONTE-CARLO
    CALLAWAY, DJE
    PETRONZIO, R
    PHYSICS LETTERS B, 1984, 148 (06) : 445 - 449
  • [7] Adaptive dimension reduction to accelerate infinite-dimensional geometric Markov Chain Monte Carlo
    Lan, Shiwei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 392 : 71 - 95
  • [8] MONTE-CARLO STUDY OF 3-DIMENSIONAL QCD
    DHOKER, E
    NUCLEAR PHYSICS B, 1981, 180 (02) : 341 - 352
  • [9] HUBBARD-MODEL IN INFINITE DIMENSIONS - A QUANTUM MONTE-CARLO STUDY
    JARRELL, M
    PHYSICAL REVIEW LETTERS, 1992, 69 (01) : 168 - 171
  • [10] MONTE-CARLO STUDY OF TWO-DIMENSIONAL VESICLES SHAPES
    PEYRAUD, J
    OSTROWSKY, N
    BIOCHIMIE, 1981, 63 (11-1) : 979 - 982