EQUATIONS OF NONLINEAR ACOUSTICS

被引:0
|
作者
KUZNETSOV, VP
机构
来源
SOVIET PHYSICS ACOUSTICS-USSR | 1971年 / 16卷 / 04期
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:467 / +
页数:1
相关论文
共 50 条
  • [1] Equations of nonlinear acoustics
    KUZNETSOV VP
    [J]. Akusticheskij Zhurnal, 1971, 16 (04): : 548 - 53
  • [2] PRECISE SOLUTIONS OF NONLINEAR ACOUSTICS EQUATIONS
    ZAIKO, YN
    [J]. PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1994, 20 (10): : 79 - 81
  • [3] On spectral methods for solving nonlinear acoustics equations
    V. P. Kuznetsov
    [J]. Acoustical Physics, 2013, 59 : 281 - 285
  • [4] Higher order model equations in nonlinear acoustics
    Tjotta, S
    [J]. ACUSTICA, 2001, 87 (03): : 316 - 321
  • [5] On spectral methods for solving nonlinear acoustics equations
    Kuznetsov, V. P.
    [J]. ACOUSTICAL PHYSICS, 2013, 59 (03) : 281 - 285
  • [6] Homogenization of the equations of high frequency nonlinear acoustics
    Lapshin, EA
    Panasenko, GP
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08): : 931 - 936
  • [7] Higher order model equations in nonlinear acoustics
    [J]. Tjtta, S., 2001, S. Hirzel Verlag GmbH (87):
  • [8] Optimal Boundary Control for Equations of Nonlinear Acoustics
    Clason, Christian
    Kaltenbacher, Barbara
    Lasiecka, Irena
    Veljovic, Slobodan
    [J]. 2010 15TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2010, : 143 - 143
  • [9] Nonlinear acoustics equations to third order -: New stabilization of the Burnett equations
    Soderholm, Lars H.
    [J]. MATHEMATICAL MODELING OF WAVE PHENOMENA, 2006, 834 : 214 - 221
  • [10] On the Kuznetsov equation and higher order nonlinear acoustics equations
    Söderholm, LH
    [J]. NONLINEAR ACOUSTICS AT THE TURN OF THE MILLENNIUM, 2000, 524 : 133 - 136