Systems with aftereffect and finite-dimensional space of essential solutions

被引:0
|
作者
Bykova, T. S. [1 ,2 ]
机构
[1] Izhevsk State Tech Univ, Phys & Math, Ul Studencheskaya 7, Izhevsk 426069, Russia
[2] Izhevsk State Tech Univ, Izhevsk 426069, Russia
关键词
linear system with aftereffect; space of essential solutions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some systems of linear equations with aftereffect and finite-dimensional space of essential solutions are considered. The conditions for stability of these systems are given.
引用
收藏
页码:21 / 23
页数:3
相关论文
共 50 条
  • [1] Stabilization of Periodic Systems with Aftereffect by Finite-Dimensional Approximations
    Dolgii, Yu. F.
    Koshkin, E. V.
    [J]. RUSSIAN MATHEMATICS, 2015, 59 (01) : 24 - 38
  • [2] Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect
    Dolgii, Yu. F.
    Koshkin, E. V.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (01): : 87 - 98
  • [3] Finite-dimensional quantum systems:: Complementarity, phase space, and all that
    Sánchez-Soto, LL
    Klimov, AB
    de Guise, H
    [J]. OPTICS AND SPECTROSCOPY, 2005, 99 (03) : 391 - 396
  • [4] Finite-dimensional quantum systems: Complementarity, phase space, and all that
    L. L. Sánchez-Soto
    A. B. Klimov
    H. de Guise
    [J]. Optics and Spectroscopy, 2005, 99 : 391 - 396
  • [5] Frame representation of quantum systems with finite-dimensional Hilbert space
    Cotfas, Nicolae
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (39)
  • [6] The Banach Space of Quasinorms on a Finite-Dimensional Space
    Cabello Sanchez, Javier
    Morales Gonzalez, Daniel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (11) : 11338 - 11356
  • [7] UNIFORM ESTIMATES FOR SOLUTIONS OF A CLASS OF NONLINEAR EQUATIONS IN A FINITE-DIMENSIONAL SPACE
    Koshanov, B. D.
    Bakytbek, M. B.
    Koshanova, G. D.
    Kozhobekova, P. Zh.
    Sabirzhanov, M. T.
    [J]. JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 120 (04): : 16 - 23
  • [8] The Banach Space of Quasinorms on a Finite-Dimensional Space
    Javier Cabello Sánchez
    Daniel Morales González
    [J]. The Journal of Geometric Analysis, 2021, 31 : 11338 - 11356
  • [9] A COMPLETELY FINITISTIC SPACE IS FINITE-DIMENSIONAL
    DEO, S
    PEARS, AR
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (JAN) : 49 - 51
  • [10] LOCAL SYMMETRIES AND PHASE-SPACE DYNAMICS OF FINITE-DIMENSIONAL SYSTEMS
    SUNDERMEYER, K
    [J]. ANNALS OF PHYSICS, 1984, 152 (02) : 418 - 450