SCATTERING THEORY FOR SOUND ABSORPTION IN FIBROUS MEDIA

被引:21
|
作者
ATTENBOROUGH, K
WALKER, LA
机构
来源
关键词
D O I
10.1121/1.1912505
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:1331 / +
页数:1
相关论文
共 50 条
  • [1] Elastic sound absorption theory of fibrous material
    Xi'an Polytechnic University, 19 South Jinhua Road, Xi'an 710048, China
    不详
    International Journal of Vehicle Noise and Vibration, 2008, 4 (03) : 190 - 204
  • [2] THEORY OF THE PROPAGATION OF SOUND IN SCATTERING AND ABSORBING MEDIA
    GIVENS, MP
    NYBORG, WL
    SCHILLING, HK
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1946, 18 (02): : 284 - 295
  • [3] An Empirical Formula for Sound Absorption of Fibrous Materials
    张新安
    JournalofDonghuaUniversity(EnglishEdition), 2008, (03) : 349 - 354
  • [4] Effects of compression on the sound absorption of fibrous materials
    Castagnède, B
    Aknine, A
    Brouard, B
    Tarnow, V
    APPLIED ACOUSTICS, 2000, 61 (02) : 173 - 182
  • [5] Sound Absorption Properties of Fibrous Porous Metals
    Ao Qingbo
    Wang Jianzhong
    Li Aijun
    Zhi Hao
    Ma Jun
    Tang Huiping
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 (02) : 387 - 391
  • [6] SOUND ABSORPTION BY THIN LAYERS OF FIBROUS MATERIALS
    EGOROV, NF
    SOVIET PHYSICS ACOUSTICS-USSR, 1969, 15 (02): : 189 - &
  • [7] Sound Absorption Properties of Fibrous Porous Metals
    Tang, Huiping (hptang@c-nin.com), 2017, Science Press (46):
  • [8] Theory of light propagation incorporating scattering and absorption in turbid media
    Yang, L
    Miklavcic, SJ
    OPTICS LETTERS, 2005, 30 (07) : 792 - 794
  • [9] Scattering of a Plane Sound Wave by a Spherical Interface of Two Media with Sound Absorption in the Acoustic Boundary Layer
    Grigorieva, N. S.
    Legusha, F. F.
    Safronov, K. S.
    ACOUSTICAL PHYSICS, 2023, 69 (03) : 325 - 329
  • [10] Scattering of a Plane Sound Wave by a Spherical Interface of Two Media with Sound Absorption in the Acoustic Boundary Layer
    N. S. Grigorieva
    F. F. Legusha
    K. S. Safronov
    Acoustical Physics, 2023, 69 : 325 - 329