Spatio-temporal modeling of sparse geostatistical malaria sporozoite rate data using a zero inflated binomial model

被引:21
|
作者
Amek, Nyaguara [1 ,2 ,3 ]
Bayoh, Nabie [1 ]
Hamel, Mary [1 ,4 ]
Lindblade, Kim A. [4 ]
Gimnig, John [4 ]
Laserson, Kayla F. [1 ]
Slutsker, Laurence [4 ]
Smith, Thomas [2 ,3 ]
Vounatsou, Penelope [2 ,3 ]
机构
[1] Ctr Dis Control & Prevent CDC, Res & Publ Hlth Collaborat, Kenya Med Res Inst, Kisumu, Kenya
[2] Swiss Trop & Publ Hlth Inst, CH-4002 Basel, Switzerland
[3] Univ Basel, Basel, Switzerland
[4] CDCP, Atlanta, GA 30301 USA
基金
瑞士国家科学基金会;
关键词
Bayesian inference; Gaussian spatial process; Health and demographic surveillance systems; Malaria entomological data; Sparse data;
D O I
10.1016/j.sste.2011.08.001
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The proportion of malaria vectors harboring the infectious stage of the parasite (the sporozoite rates) is an important component of measures of malaria transmission. Variation in time and/or space in sporozoite rates contribute substantially to spatio-temporal variation in transmission. However, because most vectors test negative for sporozoites, sporozoite rate data are sparse with large number of observed zeros across locations or over time in the case of longitudinal data. Rarely are appropriate methods and models used in analyzing such data. In this study, Bayesian zero inflated binomial (ZIB) geostatistical models were developed and compared with standard binomial analogues to analyze sporozoite data obtained from the KEMRI/CDC health and demographic surveillance system (HDSS) site in rural Western Kenya during 2002-2004. ZIB models showed a better predictive ability, identified more significant covariates and obtained narrower credible intervals for all parameters compared to standard geostatistical binomial model. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:283 / 290
页数:8
相关论文
共 50 条
  • [1] Estimating the Burden of Malaria in Senegal: Bayesian Zero-Inflated Binomial Geostatistical Modeling of the MIS 2008 Data
    Giardina, Federica
    Gosoniu, Laura
    Konate, Lassana
    Diouf, Mame Birame
    Perry, Robert
    Gaye, Oumar
    Faye, Ousmane
    Vounatsou, Penelope
    [J]. PLOS ONE, 2012, 7 (03):
  • [2] Minimizing the uncertainties of RCMs climate data by using spatio-temporal geostatistical modeling
    Venetsanou, P.
    Anagnostopoulou, C.
    Loukas, A.
    Lazoglou, G.
    Voudouris, K.
    [J]. EARTH SCIENCE INFORMATICS, 2019, 12 (02) : 183 - 196
  • [3] Minimizing the uncertainties of RCMs climate data by using spatio-temporal geostatistical modeling
    Venetsanou P.
    Anagnostopoulou C.
    Loukas A.
    Lazoglou G.
    Voudouris K.
    [J]. Earth Science Informatics, 2019, 12 : 183 - 196
  • [4] Modelling heterogeneity in malaria transmission using large sparse spatio-temporal entomological data
    Rumisha, Susan Fred
    Smith, Thomas
    Abdulla, Salim
    Masanja, Honorath
    Vounatsou, Penelope
    [J]. GLOBAL HEALTH ACTION, 2014, 7 : 1 - 13
  • [5] Nonparametric Threshold Model of Zero-Inflated Spatio-Temporal Data with Application to Shifts in Jellyfish Distribution
    Liu, Hai
    Ciannelli, Lorenzo
    Decker, Mary Beth
    Ladd, Carol
    Chan, Kung-Sik
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2011, 16 (02) : 185 - 201
  • [6] Nonparametric Threshold Model of Zero-Inflated Spatio-Temporal Data with Application to Shifts in Jellyfish Distribution
    Hai Liu
    Lorenzo Ciannelli
    Mary Beth Decker
    Carol Ladd
    Kung-Sik Chan
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16 : 185 - 201
  • [7] Bayesian spatio-temporal distributed lag modeling for delayed climatic effects on sparse malaria incidence data
    Chawarat Rotejanaprasert
    Nattwut Ekapirat
    Prayuth Sudathip
    Richard J. Maude
    [J]. BMC Medical Research Methodology, 21
  • [8] Bayesian spatio-temporal distributed lag modeling for delayed climatic effects on sparse malaria incidence data
    Rotejanaprasert, Chawarat
    Ekapirat, Nattwut
    Sudathip, Prayuth
    Maude, Richard J.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [9] Spatio-temporal surveillance of water based infectious disease (malaria) in Rawalpindi, Pakistan using geostatistical modeling techniques
    Ahmad, Sheikh Saeed
    Aziz, Neelam
    Butt, Amna
    Shabbir, Rabia
    Erum, Summra
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2015, 187 (09)
  • [10] Spatio-temporal surveillance of water based infectious disease (malaria) in Rawalpindi, Pakistan using geostatistical modeling techniques
    Sheikh Saeed Ahmad
    Neelam Aziz
    Amna Butt
    Rabia Shabbir
    Summra Erum
    [J]. Environmental Monitoring and Assessment, 2015, 187