SPIN-DIFFUSION IN THE ONE-DIMENSIONAL S = 1/2 XXZ MODEL AT INFINITE TEMPERATURE

被引:19
|
作者
BOHM, M [1 ]
VISWANATH, VS [1 ]
STOLZE, J [1 ]
MULLER, G [1 ]
机构
[1] UNIV RHODE ISL,DEPT PHYS,KINGSTON,RI 02881
来源
PHYSICAL REVIEW B | 1994年 / 49卷 / 22期
关键词
D O I
10.1103/PhysRevB.49.15669
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Time-dependent spin-autocorrelation functions at T = infinity and (in particular) their spectral densities for the bulk spin and the boundary spin of the semi-infinite spin-1/2 XXZ model (with exchange parameters J(x) = J(y) = J, J(z)) are investigated on the basis of (i) rigorous bounds in the time domain and (ii) a continued-fraction analysis in the frequency domain. We have found strong numerical evidence for spin diffusion in quantum spin models. For J(z)/J increasing from zero, the results of the short-time expansion indicate a change of the bulk-spin xx-autocorrelation function from Gaussian decay to exponential decay. The continued-fraction analysis of the same dynamic quantity signals a change from exponential decay to power-law decay as J(z)/J approaches unity and back to a more rapid decay upon further increase of that parameter. By contrast, the change in symmetry at J(z)/J = 1 has virtually no impact on the bulk-spin zz-autocorrelation function (as expected). Similar contrasting properties are observable in the boundary-spin autocorrelation functions.
引用
收藏
页码:15669 / 15681
页数:13
相关论文
共 50 条
  • [1] Symmetries and entanglement in the one-dimensional spin-1/2 XXZ model
    Rakov, Mykhailo V.
    Weyrauch, Michael
    Braiorr-Orrs, Briiissuurs
    [J]. PHYSICAL REVIEW B, 2016, 93 (05)
  • [2] SPIN AND ENERGY DIFFUSION IN ONE-DIMENSIONAL, INFINITE TEMPERATURE HEISENBERG MAGNETS
    LURIE, NA
    HUBER, DL
    BLUME, M
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (04): : 542 - 542
  • [3] SPIN DYNAMICS FOR ONE-DIMENSIONAL XY MODEL AT INFINITE TEMPERATURE
    SUR, A
    JASNOW, D
    LOWE, IJ
    [J]. PHYSICAL REVIEW B, 1975, 12 (09) : 3845 - 3848
  • [4] MAGNETIC SPIN-LATTICE RELAXATION IN THE PRESENCE OF SPIN-DIFFUSION - THE ONE-DIMENSIONAL, 2-REGION SYSTEM
    BOOTH, AD
    PACKER, KJ
    [J]. MOLECULAR PHYSICS, 1987, 62 (04) : 811 - 828
  • [5] Quantum entanglement in the one-dimensional spin-orbital SU(2) ⊗ XXZ model
    You, Wen-Long
    Horsch, Peter
    Oles, Andrzej M.
    [J]. PHYSICAL REVIEW B, 2015, 92 (05)
  • [6] Spin-diffusion approach for relaxation in bi-spaced periodic one-dimensional systems
    Kotecha, Mrignayani
    Shukla, Alok
    Pandey, Lakshman
    Kumar, Anil
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2006, 181 (01) : 113 - 118
  • [7] QUANTUM MONTE-CARLO SIMULATION OF THE ONE-DIMENSIONAL SPIN S-XXZ MODEL .1. THE METHOD
    MARCU, M
    WIESLER, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (13): : 2479 - 2496
  • [8] Spin diffusion in the one-dimensional classical Heisenberg model
    Bagchi, Debarshee
    [J]. PHYSICAL REVIEW B, 2013, 87 (07)
  • [9] FINITE-SIZE ANALYSIS OF THE STRUCTURE FACTORS IN THE ONE-DIMENSIONAL SPIN-1/2 ANTIFERROMAGNETIC XXZ MODEL
    KARBACH, M
    MUTTER, KH
    SCHMIDT, M
    [J]. PHYSICAL REVIEW B, 1994, 50 (13) : 9281 - 9292
  • [10] A three-dimensional spin-diffusion model for micromagnetics
    Claas Abert
    Michele Ruggeri
    Florian Bruckner
    Christoph Vogler
    Gino Hrkac
    Dirk Praetorius
    Dieter Suess
    [J]. Scientific Reports, 5