Local convergence of deformed Jarratt-type methods in Banach space without inverses

被引:1
|
作者
Argyros, Ioannis K. [1 ]
George, Santhosh [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] NIT Karnataka, Dept Math & Computat Sci, Mangaluru 575025, Karnataka, India
关键词
Jarratt-type methods; Banach space; local convergence; Frechet-derivative;
D O I
10.1142/S1793557116500157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a local convergence analysis for the Jarratt-type method of high convergence order in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first Frechet-derivative of the operator involved. Earlier studies use hypotheses up to the third Frechet-derivative. Hence, the applicability of these methods is expanded under weaker hypotheses and less computational cost for the constants involved in the convergence analysis. Numerical examples are also provided in this study.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Local convergence for an improved Jarratt-type method in Banach space
    Argyros, Ioannis K.
    Gonzalez, Daniel
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2015, 3 (04): : 20 - 25
  • [2] A Unified Local Convergence for Jarratt-type Methods in Banach Space Under Weak Conditions
    Argyros, Ioannis K.
    George, Santhosh
    THAI JOURNAL OF MATHEMATICS, 2015, 13 (01): : 165 - 176
  • [3] Jarratt-type methods and their convergence analysis without using Taylor expansion
    Bate, Indra
    Senapati, Kedarnath
    George, Santhosh
    Muniyasamy, M.
    Chandhini, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 487
  • [4] Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces
    Argyros, I. K.
    Gonzalez, D.
    Khattri, S. K.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2016, 57 (03): : 289 - 300
  • [5] Local convergence analysis of jarratt-type schemes for solving equations
    Argyros I.K.
    George S.
    Applied Set-Valued Analysis and Optimization, 2019, 1 (01): : 53 - 62
  • [6] Local Convergence of Jarratt-Type Methods with Less Computation of Inversion Under Weak Conditions
    Argyros, Ioannis K.
    George, Santhosh
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (02) : 228 - 236
  • [7] On a sixth-order Jarratt-type method in Banach spaces
    Argyros, Ioannis K.
    George, Santhosh
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (04)
  • [8] Relaxing convergence conditions for an inverse-free Jarratt-type approximation
    Ezquerro, JA
    Hernandez, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 83 (01) : 131 - 135
  • [9] A new convergence theorem for the Jarratt method in Banach space
    Argyros, IK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (08) : 13 - 18
  • [10] Extended Convergence Of Jarratt Type Methods
    Argyros, Ioannis Konstantinos
    George, Santhosh
    APPLIED MATHEMATICS E-NOTES, 2021, 21 : 89 - 96