Unsupervised Change Detection in Multitemporal SAR Images Using MRF Models

被引:6
|
作者
Jiang Liming [1 ]
Liao Mingsheng [1 ]
Zhang Lu [1 ]
Lin Hui [1 ]
机构
[1] Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China
关键词
change detection; multitemporal SAR image; Markov random field; EM algorithm;
D O I
10.1007/s11806-007-0051-y
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is particularly employed to exploit statistical spatial correlation of intensity levels among neighboring pixels. Under the assumption of the independency of pixels and mixed Gaussian distribution in the log-ratio difference image, a stochastic and iterative EM-MPM change-detection algorithm based on an MRF model is developed. The EM-MPM algorithm is based on a maximiser of posterior marginals (MPM) algorithm for image segmentation and an expectation-maximum (EM) algorithm for parameter estimation in a completely automatic way. The experiment results obtained on multitemporal ERS-2 SAR images show the effectiveness of the proposed method.
引用
收藏
页码:111 / 116
页数:6
相关论文
共 50 条
  • [1] Unsupervised Change Detection in Multitemporal SAR Images Using MRF Models
    JIANG Liming LIAO Mingsheng ZHANG Lu LIN Hui JIANG Liming
    [J]. Geo-spatial Information Science, 2007, (02) : 111 - 116
  • [2] Change detection in multitemporal SAR images using MRF models
    Jiang, Liming
    Liao, Mingsheng
    Zhang, Lu
    Lin, Hui
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2006, 31 (04): : 312 - 315
  • [3] An adaptive multiscale approach to unsupervised change detection in multitemporal SAR images
    Bovolo, F
    Bruzzone, L
    [J]. 2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1069 - 1072
  • [4] Fast unsupervised deep fusion network for change detection of multitemporal SAR images
    Chen, Huan
    Jiao, Licheng
    Liang, Miaomiao
    Liu, Fang
    Yang, Shuyuan
    Hou, Biao
    [J]. NEUROCOMPUTING, 2019, 332 : 56 - 70
  • [5] Unsupervised Change Detection in Multitemporal SAR Images Over Large Urban Areas
    Hu, Hongtao
    Ban, Yifang
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (08) : 3248 - 3261
  • [6] Unsupervised Change Detection in SAR images using Gaussian Mixture Models
    Kiana, E.
    Homayouni, S.
    Sharifi, M. A.
    Farid-Rohani, M.
    [J]. INTERNATIONAL CONFERENCE ON SENSORS & MODELS IN REMOTE SENSING & PHOTOGRAMMETRY, 2015, 41 (W5): : 407 - 410
  • [7] An approach to unsupervised change detection in multitemporal SAR images based on the generalized Gaussian distribution
    Bazi, Y
    Bruzzone, L
    Melgani, F
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 1402 - 1405
  • [8] An unsupervised approach based on geometrical structures to automatic change detection in multitemporal SAR images
    Chang, Bao
    Zhang, Gong
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2011, 39 (09): : 2125 - 2129
  • [9] Integrating Thresholding With Level Set Method for Unsupervised Change Detection in Multitemporal SAR Images
    Moghimi, Armin
    Mohammadzadeh, Ali
    Khazai, Safa
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2017, 43 (05) : 412 - 431
  • [10] Unsupervised Change Detection in an Urban Environment Using Multitemporal PolSAR Images
    Mishra, Bhogendra
    Susaki, Junichi
    [J]. 2013 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2013, : 45 - 48