THE DECOMPOSITION OF HOCHSCHILD COHOMOLOGY AND GERSTENHABER OPERATIONS

被引:9
|
作者
BERGERON, N [1 ]
WOLFGANG, HL [1 ]
机构
[1] MIT, DEPT MATH, CAMBRIDGE, MA 02139 USA
关键词
D O I
10.1016/0022-4049(94)00136-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a commutative algebra over a held of characteristic zero, and M be a symmetric A-bimodule. Gerstenhaber and Schack have shown that there are Hedge-type decompositions H-n(A, M) = +H-k(k,n - k)(A, M), H-n(A, M) = +H-k(k,n - k)(A, M) Of the Hochschild (co)homology. The first summands H-1,H-n - 1(A, M), H-1,H-n - 1(A, M) are known to be the Harrison (co)homology defined in terms of shuffles. We discuss interpretations of the decompositions in terms of k-shuffles and how these relate to versions of the Poincare-Birkoff-Witt theorem. We then turn to a detailed study of how the decomposition behaves with respect to the Gerstenhaber operations (cup and Lie products) in cohomology. We show by example that neither product is generally graded, but that F-q = +(r greater than or equal to q) H*,(r) (A,A) are ideals for both products with F-p boolean OR F-q subset of or equal to F-p + q and [F-p, F-q] subset of or equal to F-p + q. The results for the cup product were conjectured by Gerstenhaber and Schack.
引用
收藏
页码:243 / 265
页数:23
相关论文
共 50 条
  • [1] Gerstenhaber duality in Hochschild cohomology
    Félix, Y
    Menichi, L
    Thomas, JC
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 199 (1-3) : 43 - 59
  • [2] A∞-coderivations and the Gerstenhaber bracket on Hochschild cohomology
    Negron, Cris
    Volkov, Yury
    Witherspoon, Sarah
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2020, 14 (02) : 531 - 565
  • [3] Monoidal Categories and the Gerstenhaber Bracket in Hochschild Cohomology
    Hermann, Reiner
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 243 (1151) : I - +
  • [4] Gerstenhaber Structure on Hochschild Cohomology of Toupie Algebras
    Dalia Artenstein
    Marcelo Lanzilotta
    Andrea Solotar
    [J]. Algebras and Representation Theory, 2020, 23 : 421 - 456
  • [5] Gerstenhaber Structure on Hochschild Cohomology of Toupie Algebras
    Artenstein, Dalia
    Lanzilotta, Marcelo
    Solotar, Andrea
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (02) : 421 - 456
  • [6] Gerstenhaber algebra of the Hochschild cohomology of an associative conformal algebra
    Bo Hou
    Zhongxi Shen
    Jun Zhao
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [7] Gerstenhaber brackets on Hochschild cohomology of twisted tensor products
    Grimley, Lauren
    Nguyen, Van C.
    Witherspoon, Sarah
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (04) : 1351 - 1379
  • [8] GERSTENHABER BRACKET ON THE HOCHSCHILD COHOMOLOGY VIA AN ARBITRARY RESOLUTION
    Volkov, Yury
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (03) : 817 - 836
  • [9] Gerstenhaber algebra of the Hochschild cohomology of an associative conformal algebra
    Hou, Bo
    Shen, Zhongxi
    Zhao, Jun
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [10] THE GERSTENHABER BRACKET OF HOCHSCHILD COHOMOLOGY OF TRIANGULAR QUADRATIC MONOMIAL ALGEBRA
    Chen, Yuan
    Guo, Yanhong
    Xu, Yunge
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (02): : 175 - 190