An excellent model for studying heart development in vertebrates is the cardiac non-function lethal mutant (gene c) Mexican axolotl, Ambystoma mexicanum. In order to facilitate our analyses of the mutant system, we have undertaken a search for stage-specific molecular markers during embryonic development of the axolotl. We have concentrated on homeobox genes as suitable candidates for monitoring molecular changes during development. A 270-bp probe encoding a portion of the axolotl homeobox gene Ahox-1 was generated by PCR from a stage-18 axolotl embryonic cDNA library. P-32-labelled PCR-amplified Ahox-1 DNA was used as the probe for screening a lambda AM18 cDNA library using moderately stringent conditions. We isolated six clones and determined their partial nucleotide (nt) sequences. One of the clones, which has very high homology to human, mouse and rat Hox A5 (83 and 99% at the nt and amino-acid levels, respectively, in the homeodomain region), was analyzed further. RT-PCR analyses show that the level of expression of HoxA5 is very low at stage 11 of embryonic development (gastrula). The level of expression reaches maximum at stage 25 (tailbud) and then plateaus at stages 30 and 35 (heartbeat onset). Although the expression of Ahox-1 was also found to start at stage 11, it reaches a maximum level at stage 25 and declines at stage 35. We have also studied, using RT-PCR, the tissue-specific expression of HoxA5 and Ahox-1 in juvenile axolot1.