LP ESTIMATES ON ITERATED STOCHASTIC INTEGRALS

被引:46
|
作者
CARLEN, E [1 ]
KREE, P [1 ]
机构
[1] UNIV PARIS 06,DEPT MATH,F-75252 PARIS 05,FRANCE
来源
ANNALS OF PROBABILITY | 1991年 / 19卷 / 01期
关键词
LP ESTIMATES; ITERATED STOCHASTIC INTEGRAL; LP CONVERGENCE OF NEUMANN SERIES; EXPONENTIAL MARTINGALES; BURKHOLDER-DAVIS-GUNDY INEQUALITIES;
D O I
10.1214/aop/1176990549
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a continuous martingale M, let <M, M> denote the increasing process. Let I0, I1,... denote the iterated stochastic integrals of M. We prove the inequalities of Burkholder-Davis-Gundy type, [GRAPHICS] where ln A(p,n) approximately ln B(p,n) approximately -(n/2)ln n as n --> infinity. Our proof requires the sharp constant b(p) in Burkholder-Davis-Gundy inequalities parallel-to M parallel-to p less-than-or-equal-to b(p) parallel-to <M, M>1/2 parallel-to p. In the Appendix we prove sup(p) greater-than-or-equal-to 1(b(p)/ square-root p) = 2. We apply our inequality to the study of the L(p) convergence of the Neuman series SIGMA-I(n)(t) for exponential martingales.
引用
收藏
页码:354 / 368
页数:15
相关论文
共 50 条