COMPARISON OF PARAMETER ESTIMATORS FOR K-DISTRIBUTION

被引:96
|
作者
BLACKNELL, D
机构
[1] Defence Research Agency, Worcestershire
关键词
IMAGE PROCESSING; SIGNAL PROCESSING; SAR; PARAMETER ESTIMATION;
D O I
10.1049/ip-rsn:19949885
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Parameter estimation forms an essential part of many signal- and image-processing tasks. In particular, in the analysis of coherent imagery, such as that provided by synthetic aperture radar (SAR), parameter estimation is required to characterise the statistical properties of homogeneous regions for use in segmentation and target-detection algorithms. The statistics of SAR imagery can be modelled by the K-distribution, and so it is of interest to study methods for estimating the parameters of this distribution. In the paper, the estimation errors of three moment-based estimation schemes are compared with the maximum likelihood estimation errors calculated via the Cramer-Rao lower bound. On the basis of this comparison, recommendations are made regarding the number of looks and the parameter estimation scheme that should be used to obtain near optimum estimation performance, without resorting to cumbersome numerical evaluations of the maximum likelihood solution. In particular, it is found that an estimator based on the mean and the variance of the data yields large errors, but an estimator based on the mean of the data and the mean of the log of the data is close to optimum.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
  • [1] Properties of Moment Estimators for the K-Distribution
    Maresch, Anika
    [J]. 2009 EUROPEAN RADAR CONFERENCE (EURAD 2009), 2009, : 397 - 400
  • [2] A parameter estimation method for K-distribution
    Marhaban, MH
    [J]. IEICE TRANSACTIONS ON COMMUNICATIONS, 2004, E87B (10) : 3158 - 3162
  • [3] Bootstrapped K-distribution parameter estimation
    Abraham, Douglas A.
    Lyons, Anthony P.
    [J]. OCEANS 2006, VOLS 1-4, 2006, : 71 - +
  • [4] Recursive K-Distribution parameter estimation
    Chung, PJ
    Roberts, WJJ
    Böhme, JF
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (02) : 397 - 402
  • [5] Reliable Methods for Estimating the K-Distribution Shape Parameter
    Abraham, Douglas A.
    Lyons, Anthony P.
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2010, 35 (02) : 288 - 302
  • [6] Robust Estimation Method of K-Distribution Shape Parameter
    Zhang, Kai
    Yang, Fanlin
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2016, 41 (02) : 274 - 280
  • [7] Comparison of parameter estimators for the Dagum distribution
    Jedrzejczak, Alina
    Pekasiewicz, Dorota
    Zielinski, Wojciech
    [J]. 12TH PROFESSOR ALEKSANDER ZELIAS INTERNATIONAL CONFERENCE ON MODELLING AND FORECASTING OF SOCIO-ECONOMIC PHENOMENA, 2018, 1 : 180 - 189
  • [8] Parameter estimation for the K-distribution based on [z log(z)]
    Blacknell, D
    Tough, RJA
    [J]. IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2001, 148 (06) : 309 - 312
  • [9] SHAPE PARAMETER ESTIMATION FOR K-DISTRIBUTION USING VARIATIONAL BAYESIAN APPROACH
    Turlapaty, Anish C.
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 243 - 247
  • [10] The property of K-deformed statistics for a relativistic gas in an electromagnetic field:: K parameter and K-distribution
    Guo, Lina
    Du, Jiulin
    Liu, Zhipeng
    [J]. PHYSICS LETTERS A, 2007, 367 (06) : 431 - 435