HAUSDORFF AND CONFORMAL MEASURES ON JULIA SETS WITH A RATIONALLY INDIFFERENT PERIODIC POINT

被引:59
|
作者
DENKER, M [1 ]
URBANSKI, M [1 ]
机构
[1] N COPERNICUS UNIV,INST MATEMAT,PL-87100 TORUN,POLAND
关键词
D O I
10.1112/jlms/s2-43.1.107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Hausdorff dimension delta of a non-hyperbolic Julia set J(T) without critical points can be expressed by the smallest zero of the pressure function t bar-arrow-pointing-right P(T, - t log\T'\). This result is similar to the Bowen-Manning-McCluskey formula. The Hausdorff dimension is also shown to be the smallest exponent t is-an-element-of R for which a t-conformal measure in the sense of Sullivan exists. We also prove uniqueness properties of t-conformal measures, and we prove the absolute continuity of the Hausdorff measure H-delta with respect to any delta-conformal measure.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 50 条