ON REARRANGEMENT-INVARIANT AND MAJORANT HULLS OF AVERAGES OF REARRANGEMENT-INVARIANT AND MAJORANT IDEALS

被引:1
|
作者
MEKLER, AA
机构
[1] Botkinskaya 1, kv. 143
关键词
D O I
10.1016/0022-247X(92)90365-K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a σ-algebra on [0, 1] generated by a countable partition of [0, 1], and let (·|F) denote the corresponding conditional expectation operator. For a subset Z of L1[0, 1] we denote by MZ (resp. NZ) the smallest interpolation (resp. rearrangement invariant) subspace of L1 containing Z. In Theorem 2.7 we show that for each f ε{lunate} L1 there exists a function g ε{lunate} L1 such that ME(Mj|F=Mg). While a similar result for Nf is not true in general (that is, NE(Nj|F is not always a principal ideal), Theorem 2.9, our main result, describes when it is the case. © 1992.
引用
收藏
页码:555 / 566
页数:12
相关论文
共 50 条
  • [1] REARRANGEMENT-INVARIANT HULLS OF SETS
    GULISASHVILI, AB
    LECTURE NOTES IN MATHEMATICS, 1984, 1043 : 642 - 645
  • [2] Rearrangement-invariant hulls of weighted Lebesgue spaces
    Krepela, Martin
    Mihula, Zdenek
    Soria, Javier
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (02)
  • [3] Rearrangement-invariant hulls and kernels of the amalgam spaces on Rn
    Gulisashvili, A
    Muraz, G
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 171 - 180
  • [4] Subspaces of rearrangement-invariant spaces
    Hernandez, FL
    Kalton, NJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (04): : 794 - 833
  • [5] ISOMETRIES ON REARRANGEMENT-INVARIANT SPACES
    KALTON, NJ
    RANDRIANANTOANINA, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (04): : 351 - 355
  • [6] The rearrangement-invariant space Γp,φ
    Gogatishvili, Amiran
    Kerman, Ron
    POSITIVITY, 2014, 18 (02) : 319 - 345
  • [7] Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals
    Kalton, Nigel
    Sukochev, Fyodor
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2008, 51 (01): : 67 - 80
  • [8] CALDERON COUPLES OF REARRANGEMENT-INVARIANT SPACES
    KALTON, NJ
    STUDIA MATHEMATICA, 1993, 106 (03) : 233 - 277
  • [9] Orthogonality in nonseparable rearrangement-invariant spaces
    Astashkin, S., V
    Semenov, E. M.
    SBORNIK MATHEMATICS, 2021, 212 (11) : 1553 - 1570
  • [10] The packing constant in rearrangement-invariant spaces
    J. Appell
    E. M. Semenov
    Functional Analysis and Its Applications, 1998, 32 : 273 - 275