Mathematical Modeling of H-processes

被引:0
|
作者
Medvedev, Alexander V. [1 ]
Mihov, Eugene D. [2 ]
Nepomnyashchiy, Oleg V. [2 ]
机构
[1] Siberian State Aerosp Univ, Krasnoyarsky Rabochy 31, Krasnoyarsk 660014, Russia
[2] Siberian Fed Univ, Inst Space & Informat Technol, Kirensky 26, Krasnoyarsk 660074, Russia
关键词
priori information; identification; nonparametric model; nonparametric algorithms; H-model; fractional dimension space;
D O I
10.17516/1997-1397-2016-9-3-338-346
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of the discrete continuous processes having "tubular" structure in space "input-output" variables's modeling is investigated. The fact that when the trained parametrical models of "tubular" processes's creating, it's important to use corresponding nonparametric indicators, is reflected. Some private examples of "tubular" processes's modeling are reviewed. This examples proves that "tubular" processes proceed in the space of fractional dimension.
引用
收藏
页码:338 / 346
页数:9
相关论文
共 50 条
  • [1] Rates of decay and h-processes for one dimensional diffusions conditioned on non-absorption
    Martínez, S
    San Martín, J
    JOURNAL OF THEORETICAL PROBABILITY, 2001, 14 (01) : 199 - 212
  • [2] Rates of Decay and h-Processes for One Dimensional Diffusions Conditioned on Non-Absorption
    Servet Martínez
    Jaime San Martín
    Journal of Theoretical Probability, 2001, 14 : 199 - 212
  • [3] Mathematical modeling of demographic processes
    Dmitriev V.I.
    Kurkina E.S.
    Computational Mathematics and Modeling, 2009, 20 (1) : 51 - 64
  • [4] Mathematical modeling of microcirculatory processes
    Shvab, Irina V.
    Nimaev, Vadim V.
    2017 INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING, COMPUTER AND INFORMATION SCIENCES (SIBIRCON), 2017, : 531 - 533
  • [5] Mathematical modeling for developmental processes
    Iwasa, Yoh
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2023, 65 (05) : 272 - 281
  • [6] Mathematical Modeling of Regenerative Processes
    Chara, Osvaldo
    Tanaka, Elly M.
    Brusch, Lutz
    MECHANISM OF REGENERATION, 2014, 108 : 283 - 317
  • [7] Mathematical Modeling of Biological Processes
    Barbarossa, Maria Vittoria
    ACTA SCIENTIARUM MATHEMATICARUM, 2015, 81 (3-4): : 719 - 719
  • [8] Mathematical modeling of cyclic processes
    O. M. Sokovnin
    N. V. Zagoskina
    S. N. Zagoskin
    Theoretical Foundations of Chemical Engineering, 2010, 44 : 389 - 398
  • [9] Mathematical modeling of cyclic processes
    Sokovnin, O. M.
    Zagoskina, N. V.
    Zagoskin, S. N.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2010, 44 (04) : 389 - 398
  • [10] Mathematical Modeling of Inflammatory Processes
    Kafi, O.
    Sequeira, A.
    TRENDS IN BIOMATHEMATICS: MATHEMATICAL MODELING FOR HEALTH, HARVESTING, AND POPULATION DYNAMICS, 2019, : 255 - 269