QUENCHED CURVATURE DISORDER IN POLYMERIZED MEMBRANES

被引:27
|
作者
BENSIMON, D
MUKAMEL, D
PELITI, L
机构
[1] WEIZMANN INST SCI,DEPT NUCL PHYS,IL-76100 REHOVOT,ISRAEL
[2] NAPLES UNIV,DIPARTIMENTO SCI FIS,I-80125 NAPLES,ITALY
来源
EUROPHYSICS LETTERS | 1992年 / 18卷 / 03期
关键词
D O I
10.1209/0295-5075/18/3/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A model corresponding to the recently observed wrinkling transition in partially polymerized membranes is presented. In this model the quenched random internal disorder induced by the polymerization is coupled linearly to the local curvature of the membrane. It is argued that within the mean-field approximation the theory can be reduced to a Heisenberg spin-glass with random Dzyaloshinsky-Moriya interactions. It exhibits crumpled, flat, spin-glass (and mixed) phases with a phase transition from the flat to the glass (or mixed) phase. It is argued that these conclusions should also hold for non-self-avoiding membranes in D = 2.
引用
收藏
页码:269 / 274
页数:6
相关论文
共 50 条
  • [31] Active nematics with quenched disorder
    Kumar, Sameer
    Mishra, Shradha
    PHYSICAL REVIEW E, 2020, 102 (05)
  • [32] CRITICAL PHENOMENA AND QUENCHED DISORDER
    DOTSENKO, VS
    USPEKHI FIZICHESKIKH NAUK, 1995, 165 (05): : 481 - 528
  • [33] Fractal growth with quenched disorder
    Pietronero, L
    Cafiero, R
    Gabrielli, A
    COMPLEX BEHAVIOUR OF GLASSY SYSTEMS, 1997, 492 : 426 - 437
  • [34] Coordinatively polymerized bilayer membranes prepared in formamide
    Suh, JH
    Shim, H
    Shin, S
    LANGMUIR, 1996, 12 (09) : 2323 - 2324
  • [35] SELECTION OF TOROIDAL SHAPE OF PARTIALLY POLYMERIZED MEMBRANES
    ZHONGCAN, OY
    PHYSICAL REVIEW E, 1993, 47 (01): : 747 - 749
  • [36] Network models of fluid, hexatic and polymerized membranes
    Gompper, G
    Kroll, DM
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (42) : 8795 - 8834
  • [37] STATISTICAL-MECHANICS OF RANDOMLY POLYMERIZED MEMBRANES
    RADZIHOVSKY, L
    NELSON, DR
    PHYSICAL REVIEW A, 1991, 44 (06): : 3525 - 3542
  • [38] DILUTE AND SEMIDILUTE SOLUTIONS OF RANDOMLY POLYMERIZED MEMBRANES
    MORI, S
    KAWANISHI, K
    WADATI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (01) : 64 - 77
  • [39] FLUCTUATIONS IN THE FLAT AND COLLAPSED PHASES OF POLYMERIZED MEMBRANES
    ABRAHAM, FF
    NELSON, DR
    JOURNAL DE PHYSIQUE, 1990, 51 (23): : 2653 - 2672
  • [40] SELF-CONSISTENT THEORY OF POLYMERIZED MEMBRANES
    LEDOUSSAL, P
    RADZIHOVSKY, L
    PHYSICAL REVIEW LETTERS, 1992, 69 (08) : 1209 - 1212