THE ZERO-DIMENSIONAL PROBLEM IN PHI-4 FIELD-THEORY

被引:0
|
作者
MANOLESSOU, M
机构
[1] E. I. S. T. I., Ecole Internationale des Sciences du Traitement de l'Information, 95011 Cergy-Pontoise Cedex, Avenue du Parc
关键词
D O I
10.1063/1.529462
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article describes a new approach to the study of a PHI-4 scalar field theory. A previous work addressed the problem of equations of motion of the Schwinger functions proving the existence of a unique nontrivial solution in 0 less-than-or-equal-to r less-than-or-equal-to 2 dimensions. Here, the zero dimensions (i.e., no momentum dependence) are focused on a greatly simplified version of the proof of the existence and uniqueness of the solution is presented, which, moreover, can be extended to the case of r = 1,2 dimensions in a straightforward way.
引用
下载
收藏
页码:3476 / 3487
页数:12
相关论文
共 50 条