Results of a study on the use of synthesized light sources in white-light interferometry are presented. The optimum wavelength combination with a pair of multimode laser diodes used to generate a synthetic wavelength source was simulated theoretically and verified experimentally. Using the best wavelength combination, we found that the lowest signal-to-noise ratio required by the system was 18.1 dB in theory and 22.1 dB from experiment. The relationships between the wavelengths of the two diodes used, their coherence lengths, and the signal-to-noise ratio required by the system are shown and discussed.