Topology of Liouville Foliations for Integrable Billiards in Non-Convex Domains

被引:4
|
作者
Moskvin, V. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.3103/S002713221803004X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Plane billiards are studied in non-convex domains bounded by arcs of confocal quadrics and in domains bounded by segments of mutually perpendicular straight lines. The topology of isoenergetic surfaces of such billiards is studied by calculating rough Liouville equivalence invariants known as Fomenko molecules.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [1] Topology of Liouville foliations of integrable billiards on table-complexes
    Fomenko, Anatoly T.
    Kibkalo, Vladislav A.
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (04) : 1392 - 1423
  • [2] Topology of Liouville foliations of integrable billiards on table-complexes
    Anatoly T. Fomenko
    Vladislav A. Kibkalo
    European Journal of Mathematics, 2022, 8 : 1392 - 1423
  • [3] Classification of Liouville foliations of integrable topological billiards in magnetic fields
    Vedyushkina, V. V.
    Pustovoitov, S. E.
    SBORNIK MATHEMATICS, 2023, 214 (02) : 166 - 196
  • [4] Liouville Foliations of Topological Billiards with Slipping
    Fomenko, A. T.
    Vedyushkina, V. V.
    Zav'yalov, V. N.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2021, 28 (01) : 37 - 55
  • [5] Liouville Foliations of Topological Billiards with Slipping
    A. T. Fomenko
    V. V. Vedyushkina
    V. N. Zav’yalov
    Russian Journal of Mathematical Physics, 2021, 28 : 37 - 55
  • [6] Algorithmic Construction of Two-Dimensional Singular Fibers of Atoms of Billiards in Non-Convex Domains
    V. A. Moskvin
    Moscow University Mathematics Bulletin, 2020, 75 : 91 - 101
  • [7] Algorithmic Construction of Two-Dimensional Singular Fibers of Atoms of Billiards in Non-Convex Domains
    Moskvin, V. A.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2020, 75 (03) : 91 - 101
  • [8] Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations
    Morozov, PV
    SBORNIK MATHEMATICS, 2004, 195 (3-4) : 369 - 412
  • [9] Reflected BSDEs in non-convex domains
    Chassagneux, Jean-Francois
    Nadtochiy, Sergey
    Richou, Adrien
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 183 (3-4) : 1237 - 1284
  • [10] Reflected BSDEs in non-convex domains
    Jean-François Chassagneux
    Sergey Nadtochiy
    Adrien Richou
    Probability Theory and Related Fields, 2022, 183 : 1237 - 1284