LIMIT DISTRUBTION OF MINIMUM DISTANCE OF RANDOM LINEAR CODES

被引:37
|
作者
PIERCE, JN
机构
关键词
D O I
10.1109/TIT.1967.1054053
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:595 / +
相关论文
共 50 条
  • [1] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna, V
    Tikhomirov, Konstantin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (10) : 6388 - 6401
  • [2] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna
    Tikhomirov, Konstantin
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 114 - 119
  • [3] On computing the minimum distance of linear codes
    Mohri, Masami
    Morii, Masakatu
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000, 83 (11): : 32 - 42
  • [4] Minimum distance of linear codes and the α-invariant
    Garrousian, Mehdi
    Tohaneanu, Stefan O.
    ADVANCES IN APPLIED MATHEMATICS, 2015, 71 : 190 - 207
  • [5] On computing the minimum distance of linear codes
    Mohri, M
    Morii, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (11): : 32 - 42
  • [6] Linear quantum codes of minimum distance three
    Ruihu Li
    Xueliang Li
    Zongben Xu
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (06) : 917 - 923
  • [7] Minimum distance decoding algorithms for linear codes
    Barg, A
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1997, 1255 : 1 - 14
  • [8] Construction of linear codes with large minimum distance
    Braun, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1687 - 1691
  • [9] MINIMUM-DISTANCE BOUNDS FOR BINARY LINEAR CODES
    HELGERT, HJ
    STINAFF, RD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (03) : 344 - 356
  • [10] Quantum LDPC Codes With Almost Linear Minimum Distance
    Panteleev, Pavel
    Kalachev, Gleb
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 213 - 229