Opdam's hypergeometric functions: product formula and convolution structure in dimension 1

被引:32
|
作者
Anker, Jean-Philippe [1 ,2 ]
Ayadi, Fatma [1 ,2 ,3 ]
Sifi, Mohamed [3 ]
机构
[1] Univ Orleans, BP 6759, F-45067 Orleans 2, France
[2] CNRS, Federat Denis Poisson FR 2964, Lab MAPMO UMR 6628, F-45067 Orleans 2, France
[3] Univ Tunis El Manar, Dept Math, Tunis El Manar 2092, Tunisia
关键词
Dunkl-Cherednik operator; Opdam-Cherednik transform; product formula; convolution product; Kunze-Stein phenomenon;
D O I
10.1515/APAM.2011.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(lambda)((alpha,beta)) be the eigenfunctions of the Dunkl-Cherednik operator T-(alpha,T-beta) on R. In this paper we express the product G(lambda)((alpha,beta))(x) G(lambda)((alpha,beta))(y) as an integral in terms of G(lambda)((alpha,beta))(z) with an explicit kernel. In general this kernel is not positive. Furthermore, by taking the so-called rational limit, we recover the product formula of M. Rosler for the Dunkl kernel. We then define and study a convolution structure associated to G(lambda)((alpha,beta)).
引用
收藏
页码:11 / 44
页数:34
相关论文
共 50 条